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Abstract

This paper addresses the problem of generating possible object lo-

cations for use in object recognition. We introduce Selective Search

which combines the strength of both an exhaustive search and seg-

mentation. Like segmentation, we use the image structure to guide

our sampling process. Like exhaustive search, we aim to capture

all possible object locations. Instead of a single technique to gen-

erate possible object locations, we diversify our search and use a

variety of complementary image partitionings to deal with as many

image conditions as possible. Our Selective Search results in a

small set of data-driven, class-independent, high quality locations,

yielding 99% recall and a Mean Average Best Overlap of 0.879 at

10,097 locations. The reduced number of locations compared to

an exhaustive search enables the use of stronger machine learning

techniques and stronger appearance models for object recognition.

In this paper we show that our selective search enables the use of

the powerful Bag-of-Words model for recognition. The Selective

Search software is made publicly available 1.

1 Introduction

For a long time, objects were sought to be delineated before their

identification. This gave rise to segmentation, which aims for

a unique partitioning of the image through a generic algorithm,

where there is one part for all object silhouettes in the image. Re-

search on this topic has yielded tremendous progress over the past

years [3, 6, 13, 26]. But images are intrinsically hierarchical: In

Figure 1a the salad and spoons are inside the salad bowl, which in

turn stands on the table. Furthermore, depending on the context the

term table in this picture can refer to only the wood or include ev-

erything on the table. Therefore both the nature of images and the

different uses of an object category are hierarchical. This prohibits

the unique partitioning of objects for all but the most specific pur-

poses. Hence for most tasks multiple scales in a segmentation are a

necessity. This is most naturally addressed by using a hierarchical

partitioning, as done for example by Arbelaez et al. [3].

Besides that a segmentation should be hierarchical, a generic so-

lution for segmentation using a single strategy may not exist at all.

There are many conflicting reasons why a region should be grouped

together: In Figure 1b the cats can be separated using colour, but

their texture is the same. Conversely, in Figure 1c the chameleon
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(a) (b)
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Figure 1: There is a high variety of reasons that an image region

forms an object. In (b) the cats can be distinguished by colour, not

texture. In (c) the chameleon can be distinguished from the sur-

rounding leaves by texture, not colour. In (d) the wheels can be part

of the car because they are enclosed, not because they are similar

in texture or colour. Therefore, to find objects in a structured way

it is necessary to use a variety of diverse strategies. Furthermore,

an image is intrinsically hierarchical as there is no single scale for

which the complete table, salad bowl, and salad spoon can be found

in (a).

is similar to its surrounding leaves in terms of colour, yet its tex-

ture differs. Finally, in Figure 1d, the wheels are wildly different

from the car in terms of both colour and texture, yet are enclosed

by the car. Individual visual features therefore cannot resolve the

ambiguity of segmentation.

And, finally, there is a more fundamental problem. Regions with

very different characteristics, such as a face over a sweater, can

only be combined into one object after it has been established that

the object at hand is a human. Hence without prior recognition it is

hard to decide that a face and a sweater are part of one object [29].

This has led to the opposite of the traditional approach: to do

localisation through the identification of an object. This recent ap-

proach in object recognition has made enormous progress in less

than a decade [8, 12, 16, 35]. With an appearance model learned

from examples, an exhaustive search is performed where every lo-

cation within the image is examined as to not miss any potential

object location [8, 12, 16, 35].
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However, the exhaustive search itself has several drawbacks.

Searching every possible location is computationally infeasible.

The search space has to be reduced by using a regular grid, fixed

scales, and fixed aspect ratios. In most cases the number of lo-

cations to visit remains huge, so much that alternative restrictions

need to be imposed. The classifier is simplified and the appearance

model needs to be fast. Furthermore, a uniform sampling yields

many boxes for which it is immediately clear that they are not sup-

portive of an object. Rather then sampling locations blindly using

an exhaustive search, a key question is: Can we steer the sampling

by a data-driven analysis?

In this paper, we aim to combine the best of the intuitions of seg-

mentation and exhaustive search and propose a data-driven selec-

tive search. Inspired by bottom-up segmentation, we aim to exploit

the structure of the image to generate object locations. Inspired by

exhaustive search, we aim to capture all possible object locations.

Therefore, instead of using a single sampling technique, we aim

to diversify the sampling techniques to account for as many image

conditions as possible. Specifically, we use a data-driven grouping-

based strategy where we increase diversity by using a variety of

complementary grouping criteria and a variety of complementary

colour spaces with different invariance properties. The set of lo-

cations is obtained by combining the locations of these comple-

mentary partitionings. Our goal is to generate a class-independent,

data-driven, selective search strategy that generates a small set of

high-quality object locations.

Our application domain of selective search is object recognition.

We therefore evaluate on the most commonly used dataset for this

purpose, the Pascal VOC detection challenge which consists of 20

object classes. The size of this dataset yields computational con-

straints for our selective search. Furthermore, the use of this dataset

means that the quality of locations is mainly evaluated in terms of

bounding boxes. However, our selective search applies to regions

as well and is also applicable to concepts such as “grass”.

In this paper we propose selective search for object recognition.

Our main research questions are: (1) What are good diversification

strategies for adapting segmentation as a selective search strategy?

(2) How effective is selective search in creating a small set of high-

quality locations within an image? (3) Can we use selective search

to employ more powerful classifiers and appearance models for ob-

ject recognition?

2 Related Work

We confine the related work to the domain of object recognition

and divide it into three categories: Exhaustive search, segmenta-

tion, and other sampling strategies that do not fall in either cate-

gory.

2.1 Exhaustive Search

As an object can be located at any position and scale in the image,

it is natural to search everywhere [8, 16, 36]. However, the visual

search space is huge, making an exhaustive search computationally

expensive. This imposes constraints on the evaluation cost per lo-

cation and/or the number of locations considered. Hence most of

these sliding window techniques use a coarse search grid and fixed

aspect ratios, using weak classifiers and economic image features

such as HOG [8, 16, 36]. This method is often used as a preselec-

tion step in a cascade of classifiers [16, 36].

Related to the sliding window technique is the highly successful

part-based object localisation method of Felzenszwalb et al. [12].

Their method also performs an exhaustive search using a linear

SVM and HOG features. However, they search for objects and

object parts, whose combination results in an impressive object de-

tection performance.

Lampert et al. [17] proposed using the appearance model to

guide the search. This both alleviates the constraints of using a

regular grid, fixed scales, and fixed aspect ratio, while at the same

time reduces the number of locations visited. This is done by di-

rectly searching for the optimal window within the image using a

branch and bound technique. While they obtain impressive results

for linear classifiers, [1] found that for non-linear classifiers the

method in practice still visits over a 100,000 windows per image.

Instead of a blind exhaustive search or a branch and bound

search, we propose selective search. We use the underlying im-

age structure to generate object locations. In contrast to the dis-

cussed methods, this yields a completely class-independent set of

locations. Furthermore, because we do not use a fixed aspect ra-

tio, our method is not limited to objects but should be able to find

stuff like “grass” and “sand” as well (this also holds for [17]). Fi-

nally, we hope to generate fewer locations, which should make the

problem easier as the variability of samples becomes lower. And

more importantly, it frees up computational power which can be

used for stronger machine learning techniques and more powerful

appearance models.

2.2 Segmentation

Both Carreira and Sminchisescu [4] and Endres and Hoiem [9] pro-

pose to generate a set of class independent object hypotheses using

segmentation. Both methods generate multiple foreground/back-

ground segmentations, learn to predict the likelihood that a fore-

ground segment is a complete object, and use this to rank the seg-

ments. Both algorithms show a promising ability to accurately

delineate objects within images, confirmed by [19] who achieve

state-of-the-art results on pixel-wise image classification using [4].

As common in segmentation, both methods rely on a single strong

algorithm for identifying good regions. They obtain a variety of

locations by using many randomly initialised foreground and back-

ground seeds. In contrast, we explicitly deal with a variety of image

conditions by using different grouping criteria and different repre-

sentations. This means a lower computational investment as we do

not have to invest in the single best segmentation strategy, such as

using the excellent yet expensive contour detector of [3]. Further-

more, as we deal with different image conditions separately, we

expect our locations to have a more consistent quality. Finally, our

selective search paradigm dictates that the most interesting ques-

tion is not how our regions compare to [4, 9], but rather how they

can complement each other.

Gu et al. [15] address the problem of carefully segmenting and

recognizing objects based on their parts. They first generate a set

of part hypotheses using a grouping method based on Arbelaez et

al. [3]. Each part hypothesis is described by both appearance and

shape features. Then, an object is recognized and carefully delin-

eated by using its parts, achieving good results for shape recogni-

tion. In their work, the segmentation is hierarchical and yields seg-

ments at all scales. However, they use a single grouping strategy
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Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different

scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In

this work, we use multiple complementary strategies to deal with

as many image conditions as possible. We include the locations

generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space

of an exhaustive search by proposing to search for any object, in-

dependent of its class. In their method they train a classifier on the

object windows of those objects which have a well-defined shape

(as opposed to stuff like “grass” and “sand”). Then instead of a full

exhaustive search they randomly sample boxes to which they apply

their classifier. The boxes with the highest “objectness” measure

serve as a set of object hypotheses. This set is then used to greatly

reduce the number of windows evaluated by class-specific object

detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words

model to predict the object location. Vedaldi et al. [34] use jumping

windows [5], in which the relation between individual visual words

and the object location is learned to predict the object location in

new images. Maji and Malik [23] combine multiple of these rela-

tions to predict the object location using a Hough-transform, after

which they randomly sample windows close to the Hough maxi-

mum. In contrast to learning, we use the image structure to sample

a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-

tive search [8, 12, 16, 36] we use segmentation as selective search

yielding a small set of class independent object locations. In con-

trast to the segmentation of [4, 9], instead of focusing on the best

segmentation algorithm [3], we use a variety of strategies to deal

with as many image conditions as possible, thereby severely reduc-

ing computational costs while potentially capturing more objects

accurately. Instead of learning an objectness measure on randomly

sampled boxes [2], we use a bottom-up grouping procedure to gen-

erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object

recognition and present a variety of diversification strategies to deal

with as many image conditions as possible. A selective search al-

gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-

age. Furthermore, some objects have less clear boundaries

then other objects. Therefore, in selective search all object

scales have to be taken into account, as illustrated in Figure

2. This is most naturally achieved by using an hierarchical

algorithm.

Diversification. There is no single optimal strategy to group re-

gions together. As observed earlier in Figure 1, regions may

form an object because of only colour, only texture, or because

parts are enclosed. Furthermore, lighting conditions such as

shading and the colour of the light may influence how regions

form an object. Therefore instead of a single strategy which

works well in most cases, we want to have a diverse set of

strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of

possible object locations for use in a practical object recogni-

tion framework. The creation of this set should not become a

computational bottleneck, hence our algorithm should be rea-

sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our

selective search. Bottom-up grouping is a popular approach to seg-

mentation [6, 13], hence we adapt it for selective search. Because

the process of grouping itself is hierarchical, we can naturally gen-

erate locations at all scales by continuing the grouping process until

the whole image becomes a single region. This satisfies the condi-

tion of capturing all scales.

As regions can yield richer information than pixels, we want to

use region-based features whenever possible. To get a set of small

starting regions which ideally do not span multiple objects, we use
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the fast method of Felzenszwalb and Huttenlocher [13], which [3]

found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-

atively group regions together: First the similarities between all

neighbouring regions are calculated. The two most similar regions

are grouped together, and new similarities are calculated between

the resulting region and its neighbours. The process of grouping

the most similar regions is repeated until the whole image becomes

a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]

Initialise similarity set S = /0

foreach Neighbouring region pair (ri,r j) do
Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S 6= /0 do

Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours

S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are

fast to compute. In effect, this means that the similarities should be

based on features that can be propagated through the hierarchy, i.e.

when merging region ri and r j into rt , the features of region rt need

to be calculated from the features of ri and r j without accessing the

image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the

sampling and create a set of complementary strategies whose loca-

tions are combined afterwards. We diversify our selective search

(1) by using a variety of colour spaces with different invariance

properties, (2) by using different similarity measures si j, and (3)

by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our

hierarchical grouping algorithm in a variety of colour spaces with

a range of invariance properties. Specifically, we the following

colour spaces with an increasing degree of invariance: (1) RGB,

(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-

nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)

normalized RGB denoted as rgb, (7) C [14] which is an opponent

colour space where intensity is divided out, and finally (8) the Hue

channel H from HSV . The specific invariance properties are listed

in Table 1.

Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +

Shadows/shading - - - - - - +/- +/- + + + + +

Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +

Shadows/shading - - +/- 2/3 2/3 + + +

Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour

channels and the colour spaces used in this paper, sorted by de-

gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said

property.

these images we rely on the other diversification methods for en-

suring good object locations.

In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of

[13] and our subsequent grouping algorithm are performed in this

colour space.

Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are

all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-

gion we obtain one-dimensional colour histograms for each

colour channel using 25 bins, which we found to work well.

This leads to a colour histogram Ci = {c1i , · · · ,c
n
i } for each

region ri with dimensionality n = 75 when three colour chan-

nels are used. The colour histograms are normalised using the

L1 norm. Similarity is measured using the histogram intersec-

tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through

the hierarchy by

Ct =
size(ri)×Ci + size(r j)×C j

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-

stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-

ing fast SIFT-like measurements as SIFT itself works well for

material recognition [20]. We take Gaussian derivatives in

eight orientations using σ = 1 for each colour channel. For

each orientation for each colour channel we extract a his-

togram using a bin size of 10. This leads to a texture his-

togram Ti = {t1i , · · · , t
n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture

histograms are normalised using the L1 norm. Similarity is

measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j ). (3)

Texture histograms are efficiently propagated through the hi-

erarchy in the same way as the colour histograms.
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ssize(ri,r j) encourages small regions to merge early. This forces

regions in S, i.e. regions which have not yet been merged, to

be of similar sizes throughout the algorithm. This is desir-

able because it ensures that object locations at all scales are

created at all parts of the image. For example, it prevents a

single region from gobbling up all other regions one by one,

yielding all scales only at the location of this growing region

and nowhere else. ssize(ri,r j) is defined as the fraction of the

image that ri and r j jointly occupy:

ssize(ri,r j) = 1−
size(ri)+ size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

sfill(ri,r j) measures how well region ri and r j fit into each other.

The idea is to fill gaps: if ri is contained in r j it is logical to

merge these first in order to avoid any holes. On the other

hand, if ri and r j are hardly touching each other they will

likely form a strange region and should not be merged. To

keep the measure fast, we use only the size of the regions and

of the containing boxes. Specifically, we define BBi j to be the

tight bounding box around ri and r j. Now sfill(ri,r j) is the

fraction of the image contained in BBi j which is not covered

by the regions of ri and r j:

fill(ri,r j) = 1−
size(BBi j)− size(ri)− size(ri)

size(im)
(5)

We divide by size(im) for consistency with Equation 4. Note

that this measure can be efficiently calculated by keeping track

of the bounding boxes around each region, as the bounding

box around two regions can be easily derived from these.

In this paper, our final similarity measure is a combination of the

above four:

s(ri,r j) = a1scolour(ri,r j)+a2stexture(ri,r j)+

a3ssize(ri,r j)+a4s f ill(ri,r j), (6)

where ai ∈ {0,1} denotes if the similarity measure is used or

not. As we aim to diversify our strategies, we do not consider any

weighted similarities.

Complementary Starting Regions. A third diversification

strategy is varying the complementary starting regions. To the

best of our knowledge, the method of [13] is the fastest, publicly

available algorithm that yields high quality starting locations. We

could not find any other algorithm with similar computational effi-

ciency so we use only this oversegmentation in this paper. But note

that different starting regions are (already) obtained by varying the

colour spaces, each which has different invariance properties. Ad-

ditionally, we vary the threshold parameter k in [13].

3.3 Combining Locations

In this paper, we combine the object hypotheses of several varia-

tions of our hierarchical grouping algorithm. Ideally, we want to

order the object hypotheses in such a way that the locations which

are most likely to be an object come first. This enables one to find

a good trade-off between the quality and quantity of the resulting

object hypothesis set, depending on the computational efficiency of

the subsequent feature extraction and classification method.

We choose to order the combined object hypotheses set based

on the order in which the hypotheses were generated in each in-

dividual grouping strategy. However, as we combine results from

up to 80 different strategies, such order would too heavily empha-

size large regions. To prevent this, we include some randomness

as follows. Given a grouping strategy j, let r
j
i be the region which

is created at position i in the hierarchy, where i = 1 represents the

top of the hierarchy (whose corresponding region covers the com-

plete image). We now calculate the position value v
j
i as RND× i,

where RND is a random number in range [0,1]. The final ranking

is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we first rank

all the locations as detailed above. Only afterwards we filter out

lower ranked duplicates. This ensures that duplicate boxes have a

better chance of obtaining a high rank. This is desirable because

if multiple grouping strategies suggest the same box location, it is

likely to come from a visually coherent part of the image.

4 Object Recognition using Selective

Search

This paper uses the locations generated by our selective search for

object recognition. This section details our framework for object

recognition.

Two types of features are dominant in object recognition: his-

tograms of oriented gradients (HOG) [8] and bag-of-words [7, 27].

HOG has been shown to be successful in combination with the part-

based model by Felzenszwalb et al. [12]. However, as they use an

exhaustive search, HOG features in combination with a linear clas-

sifier is the only feasible choice from a computational perspective.

In contrast, our selective search enables the use of more expensive

and potentially more powerful features. Therefore we use bag-of-

words for object recognition [16, 17, 34]. However, we use a more

powerful (and expensive) implementation than [16, 17, 34] by em-

ploying a variety of colour-SIFT descriptors [32] and a finer spatial

pyramid division [18].

Specifically we sample descriptors at each pixel on a single scale

(σ = 1.2). Using software from [32], we extract SIFT [21] and two

colour SIFTs which were found to be the most sensitive for de-

tecting image structures, Extended OpponentSIFT [31] and RGB-

SIFT [32]. We use a visual codebook of size 4,000 and a spatial

pyramid with 4 levels using a 1x1, 2x2, 3x3. and 4x4 division.

This gives a total feature vector length of 360,000. In image clas-

sification, features of this size are already used [25, 37]. Because

a spatial pyramid results in a coarser spatial subdivision than the

cells which make up a HOG descriptor, our features contain less

information about the specific spatial layout of the object. There-

fore, HOG is better suited for rigid objects and our features are

better suited for deformable object types.

As classifier we employ a Support Vector Machine with a his-

togram intersection kernel using the Shogun Toolbox [28]. To ap-

ply the trained classifier, we use the fast, approximate classification

strategy of [22], which was shown to work well for Bag-of-Words

in [30].

Our training procedure is illustrated in Figure 3. The initial posi-

tive examples consist of all ground truth object windows. As initial

negative examples we select from all object locations generated
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Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives

we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

by our selective search that have an overlap of 20% to 50% with

a positive example. To avoid near-duplicate negative examples,

a negative example is excluded if it has more than 70% overlap

with another negative. To keep the number of initial negatives per

class below 20,000, we randomly drop half of the negatives for the

classes car, cat, dog and person. Intuitively, this set of examples

can be seen as difficult negatives which are close to the positive ex-

amples. This means they are close to the decision boundary and are

therefore likely to become support vectors even when the complete

set of negatives would be considered. Indeed, we found that this

selection of training examples gives reasonably good initial classi-

fication models.

Then we enter a retraining phase to iteratively add hard negative

examples (e.g. [12]): We apply the learned models to the training

set using the locations generated by our selective search. For each

negative image we add the highest scoring location. As our initial

training set already yields good models, our models converge in

only two iterations.

For the test set, the final model is applied to all locations gener-

ated by our selective search. The windows are sorted by classifier

score while windows which have more than 30% overlap with a

higher scoring window are considered near-duplicates and are re-

moved.

5 Evaluation

In this section we evaluate the quality of our selective search. We

divide our experiments in four parts, each spanning a separate sub-

section:

Diversification Strategies. We experiment with a variety of

colour spaces, similarity measures, and thresholds of the ini-

tial regions, all which were detailed in Section 3.2. We seek a

trade-off between the number of generated object hypotheses,

computation time, and the quality of object locations. We do

this in terms of bounding boxes. This results in a selection of

complementary techniques which together serve as our final

selective search method.

Quality of Locations. We test the quality of the object location

hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective search

in the Object Recognition framework detailed in Section 4.

We evaluate performance on the Pascal VOC detection chal-

lenge.

An upper bound of location quality. We investigate how well

our object recognition framework performs when using an ob-

ject hypothesis set of “perfect” quality. How does this com-

pare to the locations that our selective search generates?

To evaluate the quality of our object hypotheses we define

the Average Best Overlap (ABO) and Mean Average Best Over-

lap (MABO) scores, which slightly generalises the measure used

in [9]. To calculate the Average Best Overlap for a specific class c,

we calculate the best overlap between each ground truth annotation

gci ∈ Gc and the object hypotheses L generated for the correspond-

ing image, and average:

ABO =
1

|Gc| ∑
gci ∈G

c

max
l j∈L

Overlap(gci , l j). (7)

The Overlap score is taken from [11] and measures the area of the

intersection of two regions divided by its union:

Overlap(gci , l j) =
area(gci )∩ area(lj)

area(gci )∪ area(lj)
. (8)

Analogously to Average Precision and Mean Average Precision,

Mean Average Best Overlap is now defined as the mean ABO over

all classes.

Other work often uses the recall derived from the Pascal Overlap

Criterion to measure the quality of the boxes [1, 16, 34]. This crite-

rion considers an object to be found when the Overlap of Equation

8 is larger than 0.5. However, in many of our experiments we ob-

tain a recall between 95% and 100% for most classes, making this

measure too insensitive for this paper. However, we do report this

measure when comparing with other work.

To avoid overfitting, we perform the diversification strategies ex-

periments on the Pascal VOC 2007 TRAIN+VAL set. Other exper-

iments are done on the Pascal VOC 2007 TEST set. Additionally,

our object recognition system is benchmarked on the Pascal VOC

2010 detection challenge, using the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain good

quality object location hypotheses using a reasonable number of

boxes computed within a reasonable amount of time.

5.1.1 Flat versus Hierarchy

In the description of our method we claim that using a full hierar-

chy is more natural than using multiple flat partitionings by chang-
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ing a threshold. In this section we test whether the use of a hier-

archy also leads to better results. We therefore compare the use

of [13] with multiple thresholds against our proposed algorithm.

Specifically, we perform both strategies in RGB colour space. For

[13], we vary the threshold from k = 50 to k = 1000 in steps of 50.

This range captures both small and large regions. Additionally, as a

special type of threshold, we include the whole image as an object

location because quite a few images contain a single large object

only. Furthermore, we also take a coarser range from k = 50 to

k = 950 in steps of 100. For our algorithm, to create initial regions

we use a threshold of k = 50, ensuring that both strategies have

an identical smallest scale. Additionally, as we generate fewer re-

gions, we combine results using k = 50 and k = 100. As similarity

measure S we use the addition of all four similarities as defined in

Equation 6. Results are in table 2.

threshold k in [13] MABO # windows

Flat [13] k = 50,150, · · · ,950 0.659 387

Hierarchical (this paper) k = 50 0.676 395

Flat [13] k = 50,100, · · · ,1000 0.673 597

Hierarchical (this paper) k = 50,100 0.719 625

Table 2: A comparison of multiple flat partitionings against hier-

archical partitionings for generating box locations shows that for

the hierarchical strategy the Mean Average Best Overlap (MABO)

score is consistently higher at a similar number of locations.

As can be seen, the quality of object hypotheses is better for

our hierarchical strategy than for multiple flat partitionings: At a

similar number of regions, our MABO score is consistently higher.

Moreover, the increase in MABO achieved by combining the lo-

cations of two variants of our hierarchical grouping algorithm is

much higher than the increase achieved by adding extra thresholds

for the flat partitionings. We conclude that using all locations from

a hierarchical grouping algorithm is not only more natural but also

more effective than using multiple flat partitionings.

5.1.2 Individual Diversification Strategies

In this paper we propose three diversification strategies to obtain

good quality object hypotheses: varying the colour space, vary-

ing the similarity measures, and varying the thresholds to obtain

the starting regions. This section investigates the influence of each

strategy. As basic settings we use the RGB colour space, the com-

bination of all four similarity measures, and threshold k= 50. Each

time we vary a single parameter. Results are given in Table 3.

We start examining the combination of similarity measures on

the left part of Table 3. Looking first at colour, texture, size, and fill

individually, we see that the texture similarity performs worst with

a MABO of 0.581, while the other measures range between 0.63

and 0.64. To test if the relatively low score of texture is due to our

choice of feature, we also tried to represent texture by Local Binary

Patterns [24]. We experimented with 4 and 8 neighbours on dif-

ferent scales using different uniformity/consistency of the patterns

(see [24]), where we concatenate LBP histograms of the individual

colour channels. However, we obtained similar results (MABO of

0.577). We believe that one reason of the weakness of texture is be-

cause of object boundaries: When two segments are separated by

an object boundary, both sides of this boundary will yield similar

edge-responses, which inadvertently increases similarity.

Similarities MABO # box Colours MABO # box

C 0.635 356 HSV 0.693 463

T 0.581 303 I 0.670 399

S 0.640 466 RGB 0.676 395

F 0.634 449 rgI 0.693 362

C+T 0.635 346 Lab 0.690 328

C+S 0.660 383 H 0.644 322

C+F 0.660 389 rgb 0.647 207

T+S 0.650 406 C 0.615 125

T+F 0.638 400 Thresholds MABO # box

S+F 0.638 449 50 0.676 395

C+T+S 0.662 377 100 0.671 239

C+T+F 0.659 381 150 0.668 168

C+S+F 0.674 401 250 0.647 102

T+S+F 0.655 427 500 0.585 46

C+T+S+F 0.676 395 1000 0.477 19

Table 3: Mean Average Best Overlap for box-based object hy-

potheses using a variety of segmentation strategies. (C)olour,

(S)ize, and (F)ill perform similar. (T)exture by itself is weak. The

best combination is as many diverse sources as possible.

While the texture similarity yields relatively few object loca-

tions, at 300 locations the other similarity measures still yield a

MABO higher than 0.628. This suggests that when comparing

individual strategies the final MABO scores in table 3 are good

indicators of trade-off between quality and quantity of the object

hypotheses. Another observation is that combinations of similarity

measures generally outperform the single measures. In fact, us-

ing all four similarity measures perform best yielding a MABO of

0.676.

Looking at variations in the colour space in the top-right of Table

3, we observe large differences in results, ranging from a MABO

of 0.615 with 125 locations for the C colour space to a MABO of

0.693 with 463 locations for the HSV colour space. We note that

Lab-space has a particularly goodMABO score of 0.690 using only

328 boxes. Furthermore, the order of each hierarchy is effective:

using the first 328 boxes of HSV colour space yields 0.690 MABO,

while using the first 100 boxes yields 0.647 MABO. This shows

that when comparing single strategies we can use only the MABO

scores to represent the trade-off between quality and quantity of

the object hypotheses set. We will use this in the next section when

finding good combinations.

Experiments on the thresholds of [13] to generate the starting

regions show, in the bottom-right of Table 3, that a lower initial

threshold results in a higher MABO using more object locations.

5.1.3 Combinations of Diversification Strategies

We combine object location hypotheses using a variety of com-

plementary grouping strategies in order to get a good quality set

of object locations. As a full search for the best combination is

computationally expensive, we perform a greedy search using the

MABO score only as optimization criterion. We have earlier ob-

served that this score is representative for the trade-off between the

number of locations and their quality.

From the resulting ordering we create three configurations: a

single best strategy, a fast selective search, and a quality selective

search using all combinations of individual components, i.e. colour
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Diversification

Version Strategies MABO # win # strategies time (s)

Single HSV

Strategy C+T+S+F 0.693 362 1 0.71

k = 100

Selective HSV, Lab

Search C+T+S+F, T+S+F 0.799 2147 8 3.79

Fast k = 50,100
Selective HSV, Lab, rgI, H, I

Search C+T+S+F, T+S+F, F, S 0.878 10,108 80 17.15

Quality k = 50,100,150,300

Table 4: Our selective search methods resulting from a greedy

search. We take all combinations of the individual diversifica-

tion strategies selected, resulting in 1, 8, and 80 variants of our

hierarchical grouping algorithm. The Mean Average Best Over-

lap (MABO) score keeps steadily rising as the number of windows

increase.

method recall MABO # windows

Arbelaez et al. [3] 0.752 0.649±0.193 418

Alexe et al. [2] 0.944 0.694±0.111 1,853

Harzallah et al. [16] 0.830 - 200 per class

Carreira and Sminchisescu [4] 0.879 0.770±0.084 517

Endres and Hoiem [9] 0.912 0.791±0.082 790

Felzenszwalb et al. [12] 0.933 0.829±0.052 100,352 per class

Vedaldi et al. [34] 0.940 - 10,000 per class

Single Strategy 0.840 0.690±0.171 289

Selective search “Fast” 0.980 0.804±0.046 2,134

Selective search “Quality” 0.991 0.879±0.039 10,097

Table 5: Comparison of recall, Mean Average Best Overlap

(MABO) and number of window locations for a variety of meth-

ods on the Pascal 2007 TEST set.

space, similarities, thresholds, as detailed in Table 4. The greedy

search emphasizes variation in the combination of similarity mea-

sures. This confirms our diversification hypothesis: In the quality

version, next to the combination of all similarities, Fill and Size

are taken separately. The remainder of this paper uses the three

strategies in Table 4.

5.2 Quality of Locations

In this section we evaluate our selective search algorithms in terms

of both Average Best Overlap and the number of locations on the

Pascal VOC 2007 TEST set. We first evaluate box-based locations

and afterwards briefly evaluate region-based locations.

5.2.1 Box-based Locations

We compare with the sliding window search of [16], the sliding

window search of [12] using the window ratio’s of their models,

the jumping windows of [34], the “objectness” boxes of [2], the

boxes around the hierarchical segmentation algorithm of [3], the

boxes around the regions of [9], and the boxes around the regions

of [4]. From these algorithms, only [3] is not designed for finding

object locations. Yet [3] is one of the best contour detectors pub-

licly available, and results in a natural hierarchy of regions. We

include it in our evaluation to see if this algorithm designed for

segmentation also performs well on finding good object locations.

Furthermore, [4, 9] are designed to find good object regions rather

then boxes. Results are shown in Table 5 and Figure 4.

As shown in Table 5, our “Fast” and “Quality” selective search

methods yield a close to optimal recall of 98% and 99% respec-

tively. In terms of MABO, we achieve 0.804 and 0.879 respec-

tively. To appreciate what a Best Overlap of 0.879 means, Figure

5 shows for bike, cow, and person an example location which has

an overlap score between 0.874 and 0.884. This illustrates that our

selective search yields high quality object locations.

Furthermore, note that the standard deviation of our MABO

scores is relatively low: 0.046 for the fast selective search, and

0.039 for the quality selective search. This shows that selective

search is robust to difference in object properties, and also to im-

age condition often related with specific objects (one example is

indoor/outdoor lighting).

If we compare with other algorithms, the second highest recall is

at 0.940 and is achieved by the jumping windows [34] using 10,000

boxes per class. As we do not have the exact boxes, we were unable

to obtain the MABO score. This is followed by the exhaustive

search of [12] which achieves a recall of 0.933 and a MABO of

0.829 at 100,352 boxes per class (this number is the average over

all classes). This is significantly lower then our method while using

at least a factor of 10 more object locations.

Note furthermore that the segmentation methods of [4, 9] have

a relatively high standard deviation. This illustrates that a single

strategy can not work equally well for all classes. Instead, using

multiple complementary strategies leads to more stable and reliable

results.

If we compare the segmentation of Arbelaez [3] with a the sin-

gle best strategy of our method, they achieve a recall of 0.752 and

a MABO of 0.649 at 418 boxes, while we achieve 0.875 recall

and 0.698 MABO using 286 boxes. This suggests that a good seg-

mentation algorithm does not automatically result in good object

locations in terms of bounding boxes.

Figure 4 explores the trade-off between the quality and quantity

of the object hypotheses. In terms of recall, our “Fast” method out-

performs all other methods. The method of [16] seems competitive

for the 200 locations they use, but in their method the number of

boxes is per classwhile for our method the same boxes are used for

all classes. In terms of MABO, both the object hypotheses genera-

tion method of [4] and [9] have a good quantity/quality trade-off for

the up to 790 object-box locations per image they generate. How-

ever, these algorithms are computationally 114 and 59 times more

expensive than our “Fast” method.

Interestingly, the “objectness” method of [2] performs quite well

in terms of recall, but much worse in terms of MABO. This is

most likely caused by their non-maximum suppression, which sup-

presses windows which have more than an 0.5 overlap score with

an existing, higher ranked window. And while this significantly

improved results when a 0.5 overlap score is the definition of find-

ing an object, for the general problem of finding the highest quality

locations this strategy is less effective and can even be harmful by

eliminating better locations.

Figure 6 shows for several methods the Average Best Overlap

per class. It is derived that the exhaustive search of [12] which

uses 10 times more locations which are class specific, performs

similar to our method for the classes bike, table, chair, and sofa,

for the other classes our method yields the best score. In general,

the classes with the highest scores are cat, dog, horse, and sofa,

which are easy largely because the instances in the dataset tend

to be big. The classes with the lowest scores are bottle, person,

and plant, which are difficult because instances tend to be small.
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(a) Trade-off between number of object locations and the Pascal Recall criterion.
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(b) Trade-off between number of object locations and the MABO score.

Figure 4: Trade-off between quality and quantity of the object hypotheses in terms of bounding boxes on the Pascal 2007 TEST set. The

dashed lines are for those methods whose quantity is expressed is the number of boxes per class. In terms of recall “Fast” selective

search has the best trade-off. In terms of Mean Average Best Overlap the “Quality” selective search is comparable with [4, 9] yet is

much faster to compute and goes on longer resulting in a higher final MABO of 0.879.

(a) Bike: 0.863 (b) Cow: 0.874 (c) Chair: 0.884 (d) Person: 0.882 (e) Plant: 0.873

Figure 5: Examples of locations for objects whose Best Overlap score is around our Mean Average Best Overlap of 0.879. The green

boxes are the ground truth. The red boxes are created using the “Quality” selective search.
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Figure 6: The Average Best Overlap scores per class for several method for generating box-based object locations on Pascal VOC 2007

TEST. For all classes but table our “Quality” selective search yields the best locations. For 12 out of 20 classes our “Fast” selective

search outperforms the expensive [4, 9]. We always outperform [2].

Nevertheless, cow, sheep, and tv are not bigger than person and yet

can be found quite well by our algorithm.

To summarize, selective search is very effective in finding a high

quality set of object hypotheses using a limited number of boxes,

where the quality is reasonable consistent over the object classes.

The methods of [4] and [9] have a similar quality/quantity trade-off

for up to 790 object locations. However, they have more variation

over the object classes. Furthermore, they are at least 59 and 13

times more expensive to compute for our “Fast” and “Quality” se-

lective search methods respectively, which is a problem for current

dataset sizes for object recognition. In general, we conclude that

selective search yields the best quality locations at 0.879 MABO

while using a reasonable number of 10,097 class-independent ob-

ject locations.

5.2.2 Region-based Locations

In this section we examine how well the regions that our selective

search generates captures object locations. We do this on the seg-

mentation part of the Pascal VOC 2007 TEST set. We compare with

the segmentation of [3] and with the object hypothesis regions of

both [4, 9]. Table 6 shows the results. Note that the number of

regions is larger than the number of boxes as there are almost no

exact duplicates.

The object regions of both [4, 9] are of similar quality as our

“Fast” selective search, 0.665 MABO and 0.679 MABO respec-

tively where our “Fast” search yields 0.666 MABO. While [4, 9]

use fewer regions these algorithms are respectively 114 and 59

times computationally more expensive. Our “Quality” selective

search generates 22,491 regions and is respectively 25 and 13 times

faster than [4, 9], and has by far the highest score of 0.730 MABO.

method recall MABO # regions time(s)

[3] 0.539 0.540 ± 0.117 1122 64

[9] 0.813 0.679 ± 0.108 2167 226

[4] 0.782 0.665 ± 0.118 697 432

Single Strategy 0.576 0.548 ± 0.078 678 0.7

“Fast” 0.829 0.666 ± 0.089 3574 3.8

“Quality” 0.904 0.730 ± 0.093 22,491 17

[4, 9] + “Fast” 0.896 0.737±0.098 6,438 662

[4, 9] + “Quality” 0.920 0.758±0.096 25,355 675

Table 6: Comparison of algorithms to find a good set of potential

object locations in terms of regions on the segmentation part of

Pascal 2007 TEST.

Figure 7 shows the Average Best Overlap of the regions per

class. For all classes except bike, our selective search consis-

tently has relatively high ABO scores. The performance for bike

is disproportionally lower for region-locations instead of object-

locations, because bike is a wire-frame object and hence very diffi-

cult to accurately delineate.

If we compare our method to others, the method of [9] is better

for train, for the other classes our “Quality” method yields similar

or better scores. For bird, boat, bus, chair, person, plant, and tv

scores are 0.05 ABO better. For car we obtain 0.12 higher ABO

and for bottle even 0.17 higher ABO. Looking at the variation in

ABO scores in table 6, we see that selective search has a slightly

lower variation than the other methods: 0.093 MABO for “quality”

and 0.108 for [9]. However, this score is biased because of the

wire-framed bicycle: without bicycle the difference becomes more

apparent. The standard deviation for the “quality” selective search
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Figure 7: Comparison of the Average Best Overlap Scores per class

between our method and others on the Pascal 2007 TEST set. Ex-

cept for train, our “Quality” method consistently yields better Av-

erage Best Overlap scores.

becomes 0.058, and 0.100 for [9]. Again, this shows that by relying

on multiple complementary strategies instead of a single strategy

yields more stable results.

Figure 8 shows several example segmentations from our method

and [4, 9]. In the first image, the other methods have problems

keeping the white label of the bottle and the book apart. In our

case, one of our strategies ignores colour while the “fill” similarity

(Eq. 5) helps grouping the bottle and label together. The missing

bottle part, which is dusty, is already merged with the table before

this bottle segment is formed, hence “fill” will not help here. The

second image is an example of a dark image on which our algo-

rithm has generally strong results due to using a variety of colour

spaces. In this particular image, the partially intensity invariant

Lab colour space helps to isolate the car. As we do not use the

contour detection method of [3], our method sometimes generates

segments with an irregular border, which is illustrated by the third

image of a cat. The final image shows a very difficult example, for

which only [4] provides an accurate segment.

Now because of the nature of selective search, rather than pitting

methods against each other, it is more interesting to see how they

can complement each other. As both [4, 9] have a very different

algorithm, the combination should prove effective according to our

diversification hypothesis. Indeed, as can be seen in the lower part

of Table 6, combination with our “Fast” selective search leads to

0.737 MABO at 6,438 locations. This is a higher MABO using less

locations than our “quality” selective search. A combination of [4,

9] with our “quality” sampling leads to 0.758 MABO at 25,355

locations. This is a good increase at only a modest extra number of

locations.

To conclude, selective search is highly effective for generating

object locations in terms of regions. The use of a variety of strate-

gies makes it robust against various image conditions as well as

the object class. The combination of [4], [9] and our grouping al-

gorithms into a single selective search showed promising improve-

ments. Given these improvements, and given that there are many

more different partitioning algorithms out there to use in a selec-

tive search, it will be interesting to see how far our selective search

paradigm can still go in terms of computational efficiency, number

of object locations, and the quality of object locations.

0.917 0.773 0.741

0.910 0.430 0.901

0.798 0.960 0.908

0.633 0.701 0.891

Selective Search [4] [9]

Figure 8: A qualitative comparison of selective search, [4], and [9].

For our method we observe: ignoring colour allows finding the

bottle, multiple colour spaces help in dark images (car), and not

using [3] sometimes result in irregular borders such as the cat.

5.3 Object Recognition

In this section we will evaluate our selective search strategy for

object recognition using the Pascal VOC 2010 detection task.

Our selective search strategy enables the use of expensive and

powerful image representations and machine learning techniques.

In this section we use selective search inside the Bag-of-Words

based object recognition framework described in Section 4. The re-

duced number of object locations compared to an exhaustive search

make it feasible to use such a strong Bag-of-Words implementa-

tion.

To give an indication of computational requirements: The pixel-

wise extraction of three SIFT variants plus visual word assignment

takes around 10 seconds and is done once per image. The final

round of SVM learning takes around 8 hours per class on a GPU for

approximately 30,000 training examples [33] resulting from two

rounds of mining negatives on Pascal VOC 2010. Mining hard

negatives is done in parallel and takes around 11 hours on 10 ma-

chines for a single round, which is around 40 seconds per image.

This is divided into 30 seconds for counting visual word frequen-

cies and 0.5 seconds per class for classification. Testing takes 40

seconds for extracting features, visual word assignment, and count-

ing visual word frequencies, after which 0.5 seconds is needed per

class for classification. For comparison, the code of [12] (without

cascade, just like our version) needs for testing slightly less than 4

seconds per image per class. For the 20 Pascal classes this makes

our framework faster during testing.

We evaluate results using the official evaluation server. This

evaluation is independent as the test data has not been released.

We compare with the top-4 of the competition. Note that while all
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Participant Flat error Hierarchical error

University of Amsterdam (ours) 0.425 0.285

ISI lab., University of Tokyo 0.565 0.410

Table 8: Results for ImageNet Large Scale Visual Recognition

Challenge 2011 (ILSVRC2011). Hierarchical error penalises mis-

takes less if the predicted class is semantically similar to the real

class according to the WordNet hierarchy.

methods in the top-4 are based on an exhaustive search using vari-

ations on part-based model of [12] with HOG-features, our method

differs substantially by using selective search and Bag-of-Words

features. Results are shown in Table 7.

It is shown that our method yields the best results for the classes

plane, cat, cow, table, dog, plant, sheep, sofa, and tv. Except ta-

ble, sofa, and tv, these classes are all non-rigid. This is expected,

as Bag-of-Words is theoretically better suited for these classes than

the HOG-features. Indeed, for the rigid classes bike, bottle, bus,

car, person, and train the HOG-based methods perform better. The

exception is the rigid class tv. This is presumably because our se-

lective search performs well in locating tv’s, see Figure 6.

In the Pascal 2011 challenge there are several entries wich

achieve significantly higher scores than our entry. These methods

use Bag-of-Words as additional information on the locations found

by their part-based model, yielding better detection accuracy. In-

terestingly, however, by using Bag-of-Words to detect locations our

method achieves a higher total recall for many classes [10].

Finally, our selective search enabled participation to the detec-

tion task of the ImageNet Large Scale Visual Recognition Chal-

lenge 2011 (ILSVRC2011) as shown in Table 8. This dataset con-

tains 1,229,413 training images and 100,000 test images with 1,000

different object categories. Testing can be accelerated as features

extracted from the locations of selective search can be reused for

all classes. For example, using the fast Bag-of-Words framework

of [30], the time to extract SIFT-descriptors plus two colour vari-

ants takes 6.7 seconds and assignment to visual words takes 1.7

seconds 2. Using a 1x1, 2x2, and 3x3 spatial pyramid division it

takes 14 seconds to get all 172,032 dimensional features. Classifi-

cation in a cascade on the pyramid levels then takes 0.3 seconds per

class. For 1,000 classes, the total process then takes 323 seconds

per image for testing. In contrast, using the part-based framework

of [12] it takes 3.9 seconds per class per image, resulting in 3900

seconds per image for testing. This clearly shows that the reduced

number of locations helps scaling towards more classes.

We conclude that compared to an exhaustive search, selective

search enables the use of more expensive features and classifiers

and scales better as the number of classes increase.

5.4 Pascal VOC 2012

Because the Pacal VOC 2012 is the latest and perhaps final VOC

dataset, we briefly present results on this dataset to facilitate com-

parison with our work in the future. We present quality of boxes

using the TRAIN+VAL set, the quality of segments on the segmen-

tation part of TRAIN+VAL, and our localisation framework using a

Spatial Pyramid of 1x1, 2x2, 3x3, and 4x4 on the TEST set using

2We found no difference in recognition accuracy when using the Random Forest

assignment of [30] or kmeans nearest neighbour assignment in [32] on the Pascal

dataset.

Boxes TRAIN+VAL 2012 MABO # locations

“Fast” 0.814 2006

“Quality” 0.886 10681

Segments TRAIN+VAL 2012 MABO # locations

“Fast” 0.512 3482

“Quality” 0.559 22073

Table 9: Quality of locations on Pascal VOC 2012 TRAIN+VAL.

the official evaluation server.

Results for the location quality are presented in table 9. We see

that for the box-locations the results are slightly higher than in Pas-

cal VOC 2007. For the segments, however, results are worse. This

is mainly because the 2012 segmentation set is considerably more

difficult.

For the 2012 detection challenge, the Mean Average Precision is

0.350. This is similar to the 0.351 MAP obtained on Pascal VOC

2010.

5.5 An upper bound of location quality

In this experiment we investigate how close our selective search

locations are to the optimal locations in terms of recognition ac-

curacy for Bag-of-Words features. We do this on the Pascal VOC

2007 TEST set.
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Figure 9: Theoretical upper limit for the box selection within our

object recognition framework. The red curve denotes the perfor-

mance using the top n locations of our “quality” selective search

method, which has a MABO of 0.758 at 500 locations, 0.855 at

3000 locations, and 0.883 at 10,000 locations. The magenta curve

denotes the performance using the same top n locations but now

combined with the ground truth, which is the upper limit of loca-

tion quality (MABO = 1). At 10,000 locations, our object hypoth-

esis set is close to optimal in terms of object recognition accuracy.

The red line in Figure 9 shows the MAP score of our object

recognition system when the top n boxes of our “quality” selective

search method are used. The performance starts at 0.283 MAP us-

ing the first 500 object locations with a MABO of 0.758. It rapidly

increases to 0.356 MAP using the first 3000 object locations with

a MABO of 0.855, and then ends at 0.360 MAP using all 10,097

object locations with a MABO of 0.883.

The magenta line shows the performance of our object recogni-

tion system if we include the ground truth object locations to our
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System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403

MIT UCLA [38] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408

NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384

UoCTTI [12] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380

This paper .562 .424 .153 .126 .218 .493 .368 .461 .129 .321 .300 .365 .435 .529 .329 .153 .411 .318 .470 .448

Table 7: Results from the Pascal VOC 2010 detection task test set. Our method is the only object recognition system based on Bag-of-

Words. It has the best scores for 9, mostly non-rigid object categories, where the difference is up to 0.056 AP. The other methods are

based on part-based HOG features, and perform better on most rigid object classes.

hypotheses set, representing an object hypothesis set of “perfect”

quality with aMABO score of 1. When only the ground truth boxes

are used a MAP of 0.592 is achieved, which is an upper bound

of our object recognition system. However, this score rapidly de-

clines to 0.437 MAP using as few as 500 locations per image. Re-

markably, when all 10,079 boxes are used the performance drops

to 0.377 MAP, only 0.017 MAP more than when not including the

ground truth. This shows that at 10,000 object locations our hy-

potheses set is close to what can be optimally achieved for our

recognition framework. The most likely explanation is our use of

SIFT, which is designed to be shift invariant [21]. This causes ap-

proximate boxes, of a quality visualised in Figure 5, to be still good

enough. However, the small gap between the “perfect” object hy-

potheses set of 10,000 boxes and ours suggests that we arrived at

the point where the degree of invariance for Bag-of-Words may

have an adverse effect rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the number of

boxes becomes larger is due to the increased difficulty of the prob-

lem: more boxes means a higher variability, which makes the ob-

ject recognition problem harder. Earlier we hypothesized that an

exhaustive search examines all possible locations in the image,

which makes the object recognition problem hard. To test if se-

lective search alleviates the problem, we also applied our Bag-of-

Words object recognition system on an exhaustive search, using

the locations of [12]. This results in a MAP of 0.336, while the

MABO was 0.829 and the number of object locations 100,000 per

class. The same MABO is obtained using 2,000 locations with se-

lective search. At 2,000 locations, the object recognition accuracy

is 0.347. This shows that selective search indeed makes the prob-

lem easier compared to exhaustive search by reducing the possible

variation in locations.

To conclude, there is a trade-off between quality and quantity of

object hypothesis and the object recognition accuracy. High qual-

ity object locations are necessary to recognise an object in the first

place. Being able to sample fewer object hypotheses without sac-

rificing quality makes the classification problem easier and helps

to improves results. Remarkably, at a reasonable 10,000 locations,

our object hypothesis set is close to optimal for our Bag-of-Words

recognition system. This suggests that our locations are of such

quality that features with higher discriminative power than is nor-

mally found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective search. We

observed that an image is inherently hierarchical and that there are

a large variety of reasons for a region to form an object. Therefore

a single bottom-up grouping algorithm can never capture all possi-

ble object locations. To solve this we introduced selective search,

where the main insight is to use a diverse set of complementary and

hierarchical grouping strategies. This makes selective search sta-

ble, robust, and independent of the object-class, where object types

range from rigid (e.g. car) to non-rigid (e.g. cat), and theoretically

also to amorphous (e.g. water).

In terms of object windows, results show that our algorithm is

superior to the “objectness” of [2] where our fast selective search

reaches a quality of 0.804 Mean Average Best Overlap at 2,134 lo-

cations. Compared to [4, 9], our algorithm has a similar trade-off

between quality and quantity of generated windows with around

0.790 MABO for up to 790 locations, the maximum that they gen-

erate. Yet our algorithm is 13-59 times faster. Additionally, it cre-

ates up to 10,097 locations per image yielding a MABO as high as

0.879.

In terms of object regions, a combination of our algorithm with

[4, 9] yields a considerable jump in quality (MABO increases from

0.730 to 0.758), which shows that by following our diversification

paradigm there is still room for improvement.

Finally, we showed that selective search can be successfully used

to create a good Bag-of-Words based localisation and recognition

system. In fact, we showed that quality of our selective search lo-

cations are close to optimal for our version of Bag-of-Words based

object recognition.
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[15] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition using

regions. In CVPR, 2009. 2

[16] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient

object localization and image classification. In ICCV, 2009.

1, 2, 3, 5, 6, 8

[17] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient

subwindow search: A branch and bound framework for object

localization. TPAMI, 31:2129–2142, 2009. 2, 5

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of fea-

tures: Spatial pyramid matching for recognizing natural scene

categories. In CVPR, 2006. 5

[19] F. Li, J. Carreira, and C. Sminchisescu. Object recognition as

ranking holistic figure-ground hypotheses. In CVPR, 2010. 2

[20] C. Liu, L. Sharan, E.H. Adelson, and R. Rosenholtz. Ex-

ploring features in a bayesian framework for material recog-

nition. In Computer Vision and Pattern Recognition 2010.

IEEE, 2010. 4

[21] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60:91–110, 2004. 5, 13

[22] S. Maji, A. C. Berg, and J. Malik. Classification using inter-

section kernel support vector machines is efficient. In CVPR,

2008. 5

[23] S. Maji and J. Malik. Object detection using a max-margin

hough transform. In CVPR, 2009. 3

[24] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 24(7):971–987, 2002. 7

[25] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Im-

proving the Fisher Kernel for Large-Scale Image Classifica-

tion. In ECCV, 2010. 5

[26] J. Shi and J. Malik. Normalized cuts and image segmentation.

TPAMI, 22:888–905, 2000. 1

[27] J. Sivic and A. Zisserman. Video google: A text retrieval

approach to object matching in videos. In ICCV, 2003. 5

[28] Soeren Sonnenburg, Gunnar Raetsch, Sebastian Henschel,

Christian Widmer, Jonas Behr, Alexander Zien, Fabio

de Bona, Alexander Binder, Christian Gehl, and Vojtech

Franc. The shogun machine learning toolbox. JMLR,

11:1799–1802, 2010. 5

[29] Z. Tu, X. Chen, A. L. Yuille, and S. Zhu. Image parsing: Uni-

fying segmentation, detection and recognition. International

Journal of Computer Vision, Marr Prize Issue, 2005. 1

[30] J.R.R. Uijlings, A.W.M. Smeulders, and R.J.H. Scha. Real-

time visual concept classification. IEEE Transactions onMul-

timedia, In press, 2010. 5, 12

[31] K. E. A. van de Sande and T. Gevers. Illumination-invariant

descriptors for discriminative visual object categorization.

Technical report, University of Amsterdam, 2012. 5

[32] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek.

Evaluating color descriptors for object and scene recognition.

TPAMI, 32:1582–1596, 2010. 5, 12

[33] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek.

Empowering visual categorization with the GPU. TMM,

13(1):60–70, 2011. 11

[34] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-

tiple kernels for object detection. In ICCV, 2009. 3, 5, 6,

8

[35] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, volume 1, pages 511–

518, 2001. 1

[36] P. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 57:137–154, 2004. 2, 3

[37] Xi Zhou, Kai Yu, Tong Zhang, and Thomas S. Huang. Im-

age classification using super-vector coding of local image

descriptors. In ECCV, 2010. 5

[38] L. Zhu, Y. Chen, A. Yuille, andW. Freeman. Latent hierarchi-

cal structural learning for object detection. In CVPR, 2010.

13

14


	Introduction
	Related Work
	Exhaustive Search
	Segmentation
	Other Sampling Strategies

	Selective Search
	Selective Search by Hierarchical Grouping
	Diversification Strategies
	Combining Locations

	Object Recognition using Selective Search
	Evaluation
	Diversification Strategies
	Flat versus Hierarchy
	Individual Diversification Strategies
	Combinations of Diversification Strategies

	Quality of Locations
	Box-based Locations
	Region-based Locations

	Object Recognition
	Pascal VOC 2012
	An upper bound of location quality

	Conclusions

