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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the

use of SIFT [27] and HOG [7]. But if we look at perfor-

mance on the canonical visual recognition task, PASCAL

VOC object detection [13], it is generally acknowledged

that progress has been slow during 2010-2012, with small

gains obtained by building ensemble systems and employ-

ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,

a representation we could associate roughly with complex

cells in V1, the first cortical area in the primate visual path-

way. But we also know that recognition occurs several

stages downstream, which suggests that there might be hier-

archical, multi-stage processes for computing features that

are even more informative for visual recognition.

Fukushima’s “neocognitron” [17], a biologically-

inspired hierarchical and shift-invariant model for pattern

recognition, was an early attempt at just such a process.

The neocognitron, however, lacked a supervised training al-
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Figure 1: Object detection system overview. Our system (1)

takes an input image, (2) extracts around 2000 bottom-up region

proposals, (3) computes features for each proposal using a large

convolutional neural network (CNN), and then (4) classifies each

region using class-specific linear SVMs. R-CNN achieves a mean

average precision (mAP) of 53.7% on PASCAL VOC 2010. For

comparison, [34] reports 35.1% mAP using the same region pro-

posals, but with a spatial pyramid and bag-of-visual-words ap-

proach. The popular deformable part models perform at 33.4%.

gorithm. Building on Rumelhart et al. [30], LeCun et al.
[24] showed that stochastic gradient descent via backprop-

agation was effective for training convolutional neural net-

works (CNNs), a class of models that extend the neocogni-

tron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then

fell out of fashion with the rise of support vector machines.

In 2012, Krizhevsky et al. [23] rekindled interest in CNNs

by showing substantially higher image classification accu-

racy on the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) [9, 10]. Their success resulted from train-

ing a large CNN on 1.2 million labeled images, together

with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-

ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously

debated during the ILSVRC 2012 workshop. The central

issue can be distilled to the following: To what extent do

the CNN classification results on ImageNet generalize to

object detection results on the PASCAL VOC Challenge?

We answer this question by bridging the gap between

image classification and object detection. This paper is the

first to show that a CNN can lead to dramatically higher ob-

ject detection performance on PASCAL VOC as compared

to systems based on simpler HOG-like features. To achieve

this result, we focused on two problems: localizing objects
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with a deep network and training a high-capacity model

with only a small quantity of annotated detection data.

Unlike image classification, detection requires localiz-

ing (likely many) objects within an image. One approach

frames localization as a regression problem. However, work

from Szegedy et al. [33], concurrent with our own, indi-

cates that this strategy may not fare well in practice (they

report a mAP of 30.5% on VOC 2007 compared to the

58.5% achieved by our method). An alternative is to build a

sliding-window detector. CNNs have been used in this way

for at least two decades, typically on constrained object cat-

egories, such as faces [29, 35] and pedestrians [31]. In order

to maintain high spatial resolution, these CNNs typically

only have two convolutional and pooling layers. We also

considered adopting a sliding-window approach. However,

units high up in our network, which has five convolutional

layers, have very large receptive fields (195 × 195 pixels)

and strides (32×32 pixels) in the input image, which makes

precise localization within the sliding-window paradigm an

open technical challenge.

Instead, we solve the CNN localization problem by oper-

ating within the “recognition using regions” paradigm [19],

which has been successful for both object detection [34] and

semantic segmentation [5]. At test time, our method gener-

ates around 2000 category-independent region proposals for

the input image, extracts a fixed-length feature vector from

each proposal using a CNN, and then classifies each region

with category-specific linear SVMs. We use a simple tech-

nique (affine image warping) to compute a fixed-size CNN

input from each region proposal, regardless of the region’s

shape. Figure 1 presents an overview of our method and

highlights some of our results. Since our system combines

region proposals with CNNs, we dub the method R-CNN:

Regions with CNN features.

A second challenge faced in detection is that labeled data

is scarce and the amount currently available is insufficient

for training a large CNN. The conventional solution to this

problem is to use unsupervised pre-training, followed by su-

pervised fine-tuning (e.g., [31]). The second principle con-

tribution of this paper is to show that supervised pre-training

on a large auxiliary dataset (ILSVRC), followed by domain-

specific fine-tuning on a small dataset (PASCAL), is an

effective paradigm for learning high-capacity CNNs when

data is scarce. In our experiments, fine-tuning for detection

improves mAP performance by 8 percentage points. After

fine-tuning, our system achieves a mAP of 54% on VOC

2010 compared to 33% for the highly-tuned, HOG-based

deformable part model (DPM) [15, 18]. We also point read-

ers to contemporaneous work by Donahue et al. [11], who

show that Krizhevsky’s CNN can be used (without fine-

tuning) as a blackbox feature extractor, yielding excellent

performance on several recognition tasks including scene

classification, fine-grained sub-categorization, and domain

adaptation.

Our system is also quite efficient. The only class-specific

computations are a reasonably small matrix-vector product

and greedy non-maximum suppression. This computational

property follows from features that are shared across all cat-

egories and that are also two orders of magnitude lower-

dimensional than previously used region features (cf. [34]).

Understanding the failure modes of our approach is also

critical for improving it, and so we report results from the

detection analysis tool of Hoiem et al. [21]. As an immedi-

ate consequence of this analysis, we demonstrate that a sim-

ple bounding box regression method significantly reduces

mislocalizations, which are the dominant error mode.

Before developing technical details, we note that because

R-CNN operates on regions it is natural to extend it to the

task of semantic segmentation. With minor modifications,

we also achieve competitive results on the PASCAL VOC

segmentation task, with an average segmentation accuracy

of 47.9% on the VOC 2011 test set.

2. Object detection with R-CNN

Our object detection system consists of three modules.

The first generates category-independent region proposals.

These proposals define the set of candidate detections avail-

able to our detector. The second module is a large convo-

lutional neural network that extracts a fixed-length feature

vector from each region. The third module is a set of class-

specific linear SVMs. In this section, we present our design

decisions for each module, describe their test-time usage,

detail how their parameters are learned, and show results on

PASCAL VOC 2010-12.

2.1. Module design

Region proposals. A variety of recent papers offer meth-

ods for generating category-independent region proposals.

Examples include: objectness [1], selective search [34],

category-independent object proposals [12], constrained

parametric min-cuts (CPMC) [5], multi-scale combinatorial

grouping [3], and Cireşan et al. [6], who detect mitotic cells

by applying a CNN to regularly-spaced square crops, which

are a special case of region proposals. While R-CNN is ag-

nostic to the particular region proposal method, we use se-

lective search to enable a controlled comparison with prior

detection work (e.g., [34, 36]).

Feature extraction. We extract a 4096-dimensional fea-

ture vector from each region proposal using the Caffe [22]

implementation of the CNN described by Krizhevsky et
al. [23]. Features are computed by forward propagating a

mean-subtracted 227 × 227 RGB image through five con-

volutional layers and two fully connected layers. We refer

readers to [22, 23] for more network architecture details.
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aeroplane bicycle bird car

Figure 2: Warped training samples from VOC 2007 train.

In order to compute features for a region proposal, we

must first convert the image data in that region into a form

that is compatible with the CNN (its architecture requires

inputs of a fixed 227 × 227 pixel size). Of the many possi-

ble transformations of our arbitrary-shaped regions, we opt

for the simplest. Regardless of the size or aspect ratio of the

candidate region, we warp all pixels in a tight bounding box

around it to the required size. Prior to warping, we dilate the

tight bounding box so that at the warped size there are ex-

actly p pixels of warped image context around the original

box (we use p = 16). Figure 2 shows a random sampling of

warped training regions. The supplementary material dis-

cusses alternatives to warping.

2.2. Test-time detection

At test time, we run selective search on the test image

to extract around 2000 region proposals (we use selective

search’s “fast mode” in all experiments). We warp each

proposal and forward propagate it through the CNN in or-

der to read off features from the desired layer. Then, for

each class, we score each extracted feature vector using the

SVM trained for that class. Given all scored regions in an

image, we apply a greedy non-maximum suppression (for

each class independently) that rejects a region if it has an

intersection-over-union (IoU) overlap with a higher scoring

selected region larger than a learned threshold.

Run-time analysis. Two properties make detection effi-

cient. First, all CNN parameters are shared across all cate-

gories. Second, the feature vectors computed by the CNN

are low-dimensional when compared to other common ap-

proaches, such as spatial pyramids with bag-of-visual-word

encodings. The features used in the UVA detection system

[34], for example, are two orders of magnitude larger than

ours (360k vs. 4k-dimensional).

The result of such sharing is that the time spent com-

puting region proposals and features (13s/image on a GPU

or 53s/image on a CPU) is amortized over all classes. The

only class-specific computations are dot products between

features and SVM weights and non-maximum suppression.

In practice, all dot products for an image are batched into

a single matrix-matrix product. The feature matrix is typi-

cally 2000×4096 and the SVM weight matrix is 4096×N ,

where N is the number of classes.

This analysis shows that R-CNN can scale to thousands

of object classes without resorting to approximate tech-

niques, such as hashing. Even if there were 100k classes,

the resulting matrix multiplication takes only 10 seconds on

a modern multi-core CPU. This efficiency is not merely the

result of using region proposals and shared features. The

UVA system, due to its high-dimensional features, would

be two orders of magnitude slower while requiring 134GB

of memory just to store 100k linear predictors, compared to

just 1.5GB for our lower-dimensional features.

It is also interesting to contrast R-CNN with the recent

work from Dean et al. on scalable detection using DPMs

and hashing [8]. They report a mAP of around 16% on VOC

2007 at a run-time of 5 minutes per image when introducing

10k distractor classes. With our approach, 10k detectors can

run in about a minute on a CPU, and because no approxi-

mations are made mAP would remain at 59% (Section 3.2).

2.3. Training

Supervised pre-training. We discriminatively pre-trained

the CNN on a large auxiliary dataset (ILSVRC 2012) with

image-level annotations (i.e., no bounding box labels). Pre-

training was performed using the open source Caffe CNN

library [22]. In brief, our CNN nearly matches the perfor-

mance of Krizhevsky et al. [23], obtaining a top-1 error rate

2.2 percentage points higher on the ILSVRC 2012 valida-

tion set. This discrepancy is due to simplifications in the

training process.

Domain-specific fine-tuning. To adapt our CNN to the

new task (detection) and the new domain (warped VOC

windows), we continue stochastic gradient descent (SGD)

training of the CNN parameters using only warped re-

gion proposals from VOC. Aside from replacing the CNN’s

ImageNet-specific 1000-way classification layer with a ran-

domly initialized 21-way classification layer (for the 20

VOC classes plus background), the CNN architecture is un-

changed. We treat all region proposals with≥ 0.5 IoU over-

lap with a ground-truth box as positives for that box’s class

and the rest as negatives. We start SGD at a learning rate

of 0.001 (1/10th of the initial pre-training rate), which al-

lows fine-tuning to make progress while not clobbering the

initialization. In each SGD iteration, we uniformly sample

32 positive windows (over all classes) and 96 background

windows to construct a mini-batch of size 128. We bias

the sampling towards positive windows because they are ex-

tremely rare compared to background.

Object category classifiers. Consider training a binary

classifier to detect cars. It’s clear that an image region

tightly enclosing a car should be a positive example. Simi-

larly, it’s clear that a background region, which has nothing

to do with cars, should be a negative example. Less clear

is how to label a region that partially overlaps a car. We re-

solve this issue with an IoU overlap threshold, below which

regions are defined as negatives. The overlap threshold, 0.3,
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VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

DPM v5 [18]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4

UVA [34] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1

Regionlets [36] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7

SegDPM [16]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4

R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2

R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all

methods use selective search region proposals. Bounding box regression (BB) is described in Section 3.4. At publication time, SegDPM

was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.

was selected by a grid search over {0, 0.1, . . . , 0.5} on a

validation set. We found that selecting this threshold care-

fully is important. Setting it to 0.5, as in [34], decreased

mAP by 5 points. Similarly, setting it to 0 decreased mAP

by 4 points. Positive examples are defined simply to be the

ground-truth bounding boxes for each class.

Once features are extracted and training labels are ap-

plied, we optimize one linear SVM per class. Since the

training data is too large to fit in memory, we adopt the

standard hard negative mining method [15, 32]. Hard neg-

ative mining converges quickly and in practice mAP stops

increasing after only a single pass over all images.

In supplementary material we discuss why the positive

and negative examples are defined differently in fine-tuning

versus SVM training. We also discuss why it’s necessary

to train detection classifiers rather than simply use outputs

from the final layer (fc8) of the fine-tuned CNN.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices [13], we

validated all design decisions and hyperparameters on the

VOC 2007 dataset (Section 3.2). For final results on the

VOC 2010-12 datasets, we fine-tuned the CNN on VOC

2012 train and optimized our detection SVMs on VOC 2012

trainval. We submitted test results to the evaluation server

only once for each of the two major algorithm variants (with

and without bounding box regression).

Table 1 shows complete results on VOC 2010. We com-

pare our method against four strong baselines, including

SegDPM [16], which combines DPM detectors with the

output of a semantic segmentation system [4] and uses ad-

ditional inter-detector context and image-classifier rescor-

ing. The most germane comparison is to the UVA system

from Uijlings et al. [34], since our systems use the same re-

gion proposal algorithm. To classify regions, their method

builds a four-level spatial pyramid and populates it with

densely sampled SIFT, Extended OpponentSIFT, and RGB-

SIFT descriptors, each vector quantized with 4000-word

codebooks. Classification is performed with a histogram

intersection kernel SVM. Compared to their multi-feature,

non-linear kernel SVM approach, we achieve a large im-

provement in mAP, from 35.1% to 53.7% mAP, while also

being much faster (Section 2.2). Our method achieves sim-

ilar performance (53.3% mAP) on VOC 2011/12 test.

3. Visualization, ablation, and modes of error

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy

to understand [23]. They capture oriented edges and oppo-

nent colors. Understanding the subsequent layers is more

challenging. Zeiler and Fergus present a visually attrac-

tive deconvolutional approach in [37]. We propose a simple

(and complementary) non-parametric method that directly

shows what the network learned.

The idea is to single out a particular unit (feature) in the

network and use it as if it were an object detector in its own

right. That is, we compute the unit’s activations on a large

set of held-out region proposals (about 10 million), sort the

proposals from highest to lowest activation, perform non-

maximum suppression, and then display the top-scoring re-

gions. Our method lets the selected unit “speak for itself”

by showing exactly which inputs it fires on. We avoid aver-

aging in order to see different visual modes and gain insight

into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-

pooled output of the network’s fifth and final convolutional

layer. The pool5 feature map is 6 × 6 × 256 = 9216-

dimensional. Ignoring boundary effects, each pool5 unit has

a receptive field of 195×195 pixels in the original 227×227
pixel input. A central pool5 unit has a nearly global view,

while one near the edge has a smaller, clipped support.

Each row in Figure 3 displays the top 16 activations for

a pool5 unit from a CNN that we fine-tuned on VOC 2007

trainval. Six of the 256 functionally unique units are visu-

alized (the supplementary material includes more). These

units were selected to show a representative sample of what

the network learns. In the second row, we see a unit that

fires on dog faces and dot arrays. The unit corresponding to

the third row is a red blob detector. There are also detectors

for human faces and more abstract patterns such as text and

triangular structures with windows. The network appears

to learn a representation that combines a small number of

class-tuned features together with a distributed representa-
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1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

1.0 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Figure 3: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,

such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2

R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2

R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7

R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3

R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1

R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 [18] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

DPM ST [26] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1

DPM HSC [28] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show

results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding box

regression (BB) stage that reduces localization errors (Section 3.4). Rows 8-10 present DPM methods as a strong baseline. The first uses

only HOG, while the next two use different feature learning approaches to augment or replace HOG.

tion of shape, texture, color, and material properties. The

subsequent fully connected layer fc6 has the ability to model

a large set of compositions of these rich features.

3.2. Ablation studies

Performance layer-by-layer, without fine-tuning. To un-

derstand which layers are critical for detection performance,

we analyzed results on the VOC 2007 dataset for each of the

CNN’s last three layers. Layer pool5 was briefly described

in Section 3.1. The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute fea-

tures, it multiplies a 4096×9216 weight matrix by the pool5
feature map (reshaped as a 9216-dimensional vector) and

then adds a vector of biases. This intermediate vector is

component-wise half-wave rectified (x← max(0, x)).
Layer fc7 is the final layer of the network. It is imple-

mented by multiplying the features computed by fc6 by a

4096 × 4096 weight matrix, and similarly adding a vector

of biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-

trained on ILSVRC 2012 only. Analyzing performance

layer-by-layer (Table 2 rows 1-3) reveals that features from

fc7 generalize worse than features from fc6. This means

that 29%, or about 16.8 million, of the CNN’s parameters

can be removed without degrading mAP. More surprising is

that removing both fc7 and fc6 produces quite good results

even though pool5 features are computed using only 6% of

the CNN’s parameters. Much of the CNN’s representational

power comes from its convolutional layers, rather than from

the much larger densely connected layers. This finding sug-

gests potential utility in computing a dense feature map, in

the sense of HOG, of an arbitrary-sized image by using only

the convolutional layers of the CNN. This representation

would enable experimentation with sliding-window detec-

tors, including DPM, on top of pool5 features.
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Performance layer-by-layer, with fine-tuning. We now

look at results from our CNN after having fine-tuned its pa-

rameters on VOC 2007 trainval. The improvement is strik-

ing (Table 2 rows 4-6): fine-tuning increases mAP by 8.0

percentage points to 54.2%. The boost from fine-tuning is

much larger for fc6 and fc7 than for pool5, which suggests

that the pool5 features learned from ImageNet are general

and that most of the improvement is gained from learning

domain-specific non-linear classifiers on top of them.

Comparison to recent feature learning methods. Rela-

tively few feature learning methods have been tried on PAS-

CAL VOC detection. We look at two recent approaches that

build on deformable part models. For reference, we also in-

clude results for the standard HOG-based DPM [18].

The first DPM feature learning method, DPM ST [26],

augments HOG features with histograms of “sketch token”

probabilities. Intuitively, a sketch token is a tight distri-

bution of contours passing through the center of an image

patch. Sketch token probabilities are computed at each pixel

by a random forest that was trained to classify 35×35 pixel

patches into one of 150 sketch tokens or background.

The second method, DPM HSC [28], replaces HOG with

histograms of sparse codes (HSC). To compute an HSC,

sparse code activations are solved for at each pixel using

a learned dictionary of 100 7 × 7 pixel (grayscale) atoms.

The resulting activations are rectified in three ways (full and

both half-waves), spatially pooled, unit �2 normalized, and

then power transformed (x← sign(x)|x|α).

All R-CNN variants strongly outperform the three DPM

baselines (Table 2 rows 8-10), including the two that use

feature learning. Compared to the latest version of DPM,

which uses only HOG features, our mAP is more than 20

percentage points higher: 54.2% vs. 33.7%—a 61% rela-
tive improvement. The combination of HOG and sketch to-

kens yields 2.5 mAP points over HOG alone, while HSC

improves over HOG by 4 mAP points (when compared

internally to their private DPM baselines—both use non-

public implementations of DPM that underperform the open

source version [18]). These methods achieve mAPs of

29.1% and 34.3%, respectively.

3.3. Detection error analysis

We applied the excellent detection analysis tool from

Hoiem et al. [21] in order to reveal our method’s error

modes, understand how fine-tuning changes them, and to

see how our error types compare with DPM. A full sum-

mary of the analysis tool is beyond the scope of this pa-

per and we encourage readers to consult [21] to understand

some finer details (such as “normalized AP”). Since the

analysis is best absorbed in the context of the associated

plots, we present the discussion within the captions of Fig-

ure 4 and Figure 5.
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Figure 4: Distribution of top-ranked false positive (FP) types.
Each plot shows the evolving distribution of FP types as more FPs

are considered in order of decreasing score. Each FP is catego-

rized into 1 of 4 types: Loc—poor localization (a detection with

an IoU overlap with the correct class between 0.1 and 0.5, or a du-

plicate); Sim—confusion with a similar category; Oth—confusion

with a dissimilar object category; BG—a FP that fired on back-

ground. Compared with DPM (see [21]), significantly more of

our errors result from poor localization, rather than confusion with

background or other object classes, indicating that the CNN fea-

tures are much more discriminative than HOG. Loose localiza-

tion likely results from our use of bottom-up region proposals and

the positional invariance learned from pre-training the CNN for

whole-image classification. Column three shows how our simple

bounding box regression method fixes many localization errors.

3.4. Bounding box regression

Based on the error analysis, we implemented a simple

method to reduce localization errors. Inspired by the bound-

ing box regression employed in DPM [15], we train a linear

regression model to predict a new detection window given

the pool5 features for a selective search region proposal.

Full details are given in the supplementary material. Re-

sults in Table 1, Table 2, and Figure 4 show that this simple

approach fixes a large number of mislocalized detections,

boosting mAP by 3 to 4 points.

4. Semantic segmentation

Region classification is a standard technique for seman-

tic segmentation, allowing us to easily apply R-CNN to the

PASCAL VOC segmentation challenge. To facilitate a di-

rect comparison with the current leading semantic segmen-

tation system (called O2P for “second-order pooling”) [4],

we work within their open source framework. O2P uses

CPMC to generate 150 region proposals per image and then

predicts the quality of each region, for each class, using

support vector regression (SVR). The high performance of

their approach is due to the quality of the CPMC regions
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Figure 5: Sensitivity to object characteristics. Each plot shows the mean (over classes) normalized AP (see [21]) for the highest and

lowest performing subsets within six different object characteristics (occlusion, truncation, bounding box area, aspect ratio, viewpoint, part

visibility). We show plots for our method (R-CNN) with and without fine-tuning (FT) and bounding box regression (BB) as well as for

DPM voc-release5. Overall, fine-tuning does not reduce sensitivity (the difference between max and min), but does substantially improve

both the highest and lowest performing subsets for nearly all characteristics. This indicates that fine-tuning does more than simply improve

the lowest performing subsets for aspect ratio and bounding box area, as one might conjecture based on how we warp network inputs.

Instead, fine-tuning improves robustness for all characteristics including occlusion, truncation, viewpoint, and part visibility.

and the powerful second-order pooling of multiple feature

types (enriched variants of SIFT and LBP). We also note

that Farabet et al. [14] recently demonstrated good results

on several dense scene labeling datasets (not including PAS-

CAL) using a CNN as a multi-scale per-pixel classifier.

We follow [2, 4] and extend the PASCAL segmentation

training set to include the extra annotations made available

by Hariharan et al. [20]. Design decisions and hyperparam-

eters were cross-validated on the VOC 2011 validation set.

Final test results were evaluated only once.

CNN features for segmentation. We evaluate three strate-

gies for computing features on CPMC regions, all of which

begin by warping the rectangular window around the re-

gion to 227 × 227. The first strategy (full) ignores the re-

gion’s shape and computes CNN features directly on the

warped window, exactly as we did for detection. However,

these features ignore the non-rectangular shape of the re-

gion. Two regions might have very similar bounding boxes

while having very little overlap. Therefore, the second strat-

egy (fg) computes CNN features only on a region’s fore-

ground mask. We replace the background with the mean

input so that background regions are zero after mean sub-

traction. The third strategy (full+fg) simply concatenates

the full and fg features; our experiments validate their com-

plementarity.

full R-CNN fg R-CNN full+fg R-CNN

O2P [4] fc6 fc7 fc6 fc7 fc6 fc7
46.4 43.0 42.5 43.7 42.1 47.9 45.8

Table 3: Segmentation mean accuracy (%) on VOC 2011 vali-
dation. Column 1 presents O2P; 2-7 use our CNN pre-trained on

ILSVRC 2012.

Results on VOC 2011. Table 3 shows a summary of our

results on the VOC 2011 validation set compared with O2P.

(See supplementary material for complete per-category re-

sults.) Within each feature computation strategy, layer fc6
always outperforms fc7 and the following discussion refers

to the fc6 features. The fg strategy slightly outperforms full,
indicating that the masked region shape provides a stronger

signal, matching our intuition. However, full+fg achieves

an average accuracy of 47.9%, our best result by a mar-

gin of 4.2% (also modestly outperforming O2P), indicating

that the context provided by the full features is highly infor-

mative even given the fg features. Notably, training the 20

SVRs on our full+fg features takes an hour on a single core,

compared to 10+ hours for training on O2P features.

In Table 4 we present results on the VOC 2011 test

set, comparing our best-performing method, fc6 (full+fg),

against two strong baselines. Our method achieves the high-

est segmentation accuracy for 11 out of 21 categories, and

the highest overall segmentation accuracy of 47.9%, aver-

aged across categories (but likely ties with the O2P result

under any reasonable margin of error). Still better perfor-

mance could likely be achieved by fine-tuning.

5. Conclusion

In recent years, object detection performance had stag-

nated. The best performing systems were complex en-

sembles combining multiple low-level image features with

high-level context from object detectors and scene classi-

fiers. This paper presents a simple and scalable object de-

tection algorithm that gives a 30% relative improvement

over the best previous results on PASCAL VOC 2012.

We achieved this performance through two insights. The

first is to apply high-capacity convolutional neural net-

works to bottom-up region proposals in order to localize

and segment objects. The second is a paradigm for train-

ing large CNNs when labeled training data is scarce. We

show that it is highly effective to pre-train the network—

with supervision—for a auxiliary task with abundant data

(image classification) and then to fine-tune the network for

the target task where data is scarce (detection). We conjec-

ture that the “supervised pre-training/domain-specific fine-

tuning” paradigm will be highly effective for a variety of
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VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

R&P [2] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8

O2P [4] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6

ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

Table 4: Segmentation accuracy (%) on VOC 2011 test. We compare against two strong baselines: the “Regions and Parts” (R&P)

method of [2] and the second-order pooling (O2P) method of [4]. Without any fine-tuning, our CNN achieves top segmentation perfor-

mance, outperforming R&P and roughly matching O2P.

data-scarce vision problems.

We conclude by noting that it is significant that we

achieved these results by using a combination of classi-

cal tools from computer vision and deep learning (bottom-

up region proposals and convolutional neural networks).

Rather than opposing lines of scientific inquiry, the two are

natural and inevitable partners.
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