
Fast R-CNN

Ross Girshick

Microsoft Research

rbg@microsoft.com

Abstract

This paper proposes a Fast Region-based Convolutional

Network method (Fast R-CNN) for object detection. Fast

R-CNN builds on previous work to efficiently classify ob-

ject proposals using deep convolutional networks. Com-

pared to previous work, Fast R-CNN employs several in-

novations to improve training and testing speed while also

increasing detection accuracy. Fast R-CNN trains the very

deep VGG16 network 9× faster than R-CNN, is 213× faster

at test-time, and achieves a higher mAP on PASCAL VOC

2012. Compared to SPPnet, Fast R-CNN trains VGG16 3×
faster, tests 10× faster, and is more accurate. Fast R-CNN

is implemented in Python and C++ (using Caffe) and is

available under the open-source MIT License at https:

//github.com/rbgirshick/fast-rcnn.

1. Introduction

Recently, deep ConvNets [14, 16] have significantly im-

proved image classification [14] and object detection [9, 19]

accuracy. Compared to image classification, object detec-

tion is a more challenging task that requires more com-

plex methods to solve. Due to this complexity, current ap-

proaches (e.g., [9, 11, 19, 25]) train models in multi-stage

pipelines that are slow and inelegant.

Complexity arises because detection requires the ac-

curate localization of objects, creating two primary chal-

lenges. First, numerous candidate object locations (often

called “proposals”) must be processed. Second, these can-

didates provide only rough localization that must be refined

to achieve precise localization. Solutions to these problems

often compromise speed, accuracy, or simplicity.

In this paper, we streamline the training process for state-

of-the-art ConvNet-based object detectors [9, 11]. We pro-

pose a single-stage training algorithm that jointly learns to

classify object proposals and refine their spatial locations.

The resulting method can train a very deep detection

network (VGG16 [20]) 9× faster than R-CNN [9] and 3×
faster than SPPnet [11]. At runtime, the detection network

processes images in 0.3s (excluding object proposal time)

while achieving top accuracy on PASCAL VOC 2012 [7]

with a mAP of 66% (vs. 62% for R-CNN).1

1.1. R­CNN and SPPnet

The Region-based Convolutional Network method (R-

CNN) [9] achieves excellent object detection accuracy by

using a deep ConvNet to classify object proposals. R-CNN,

however, has notable drawbacks:

1. Training is a multi-stage pipeline. R-CNN first fine-

tunes a ConvNet on object proposals using log loss.

Then, it fits SVMs to ConvNet features. These SVMs

act as object detectors, replacing the softmax classi-

fier learnt by fine-tuning. In the third training stage,

bounding-box regressors are learned.

2. Training is expensive in space and time. For SVM

and bounding-box regressor training, features are ex-

tracted from each object proposal in each image and

written to disk. With very deep networks, such as

VGG16, this process takes 2.5 GPU-days for the 5k

images of the VOC07 trainval set. These features re-

quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are

extracted from each object proposal in each test image.

Detection with VGG16 takes 47s / image (on a GPU).

R-CNN is slow because it performs a ConvNet forward

pass for each object proposal, without sharing computation.

Spatial pyramid pooling networks (SPPnets) [11] were pro-

posed to speed up R-CNN by sharing computation. The

SPPnet method computes a convolutional feature map for

the entire input image and then classifies each object pro-

posal using a feature vector extracted from the shared fea-

ture map. Features are extracted for a proposal by max-

pooling the portion of the feature map inside the proposal

into a fixed-size output (e.g., 6 × 6). Multiple output sizes

are pooled and then concatenated as in spatial pyramid pool-

ing [15]. SPPnet accelerates R-CNN by 10 to 100× at test

time. Training time is also reduced by 3× due to faster pro-

posal feature extraction.

1All timings use one Nvidia K40 GPU overclocked to 875 MHz.

1440

https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/fast-rcnn

SPPnet also has notable drawbacks. Like R-CNN, train-

ing is a multi-stage pipeline that involves extracting fea-

tures, fine-tuning a network with log loss, training SVMs,

and finally fitting bounding-box regressors. Features are

also written to disk. But unlike R-CNN, the fine-tuning al-

gorithm proposed in [11] cannot update the convolutional

layers that precede the spatial pyramid pooling. Unsurpris-

ingly, this limitation (fixed convolutional layers) limits the

accuracy of very deep networks.

1.2. Contributions

We propose a new training algorithm that fixes the disad-

vantages of R-CNN and SPPnet, while improving on their

speed and accuracy. We call this method Fast R-CNN be-

cause it’s comparatively fast to train and test. The Fast R-

CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe

[13]) and is available under the open-source MIT Li-

cense at https://github.com/rbgirshick/

fast-rcnn.

2. Fast R-CNN architecture and training

Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set

of object proposals. The network first processes the whole

image with several convolutional (conv) and max pooling

layers to produce a conv feature map. Then, for each ob-

ject proposal a region of interest (RoI) pooling layer ex-

tracts a fixed-length feature vector from the feature map.

Each feature vector is fed into a sequence of fully connected

(fc) layers that finally branch into two sibling output lay-

ers: one that produces softmax probability estimates over

K object classes plus a catch-all “background” class and

another layer that outputs four real-valued numbers for each

of the K object classes. Each set of 4 values encodes refined

bounding-box positions for one of the K classes.

2.1. The RoI pooling layer

The RoI pooling layer uses max pooling to convert the

features inside any valid region of interest into a small fea-

ture map with a fixed spatial extent of H ×W (e.g., 7× 7),

where H and W are layer hyper-parameters that are inde-

pendent of any particular RoI. In this paper, an RoI is a

rectangular window into a conv feature map. Each RoI is

defined by a four-tuple (r, c, h, w) that specifies its top-left

corner (r, c) and its height and width (h,w).

Deep

ConvNet

Conv

feature map

RoI

projection

RoI

pooling

layer FCs

RoI feature

vector

softmax

bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-

ple regions of interest (RoIs) are input into a fully convolutional

network. Each RoI is pooled into a fixed-size feature map and

then mapped to a feature vector by fully connected layers (FCs).

The network has two output vectors per RoI: softmax probabilities

and per-class bounding-box regression offsets. The architecture is

trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h× w RoI win-

dow into an H × W grid of sub-windows of approximate

size h/H × w/W and then max-pooling the values in each

sub-window into the corresponding output grid cell. Pool-

ing is applied independently to each feature map channel,

as in standard max pooling. The RoI layer is simply the

special-case of the spatial pyramid pooling layer used in

SPPnets [11] in which there is only one pyramid level. We

use the pooling sub-window calculation given in [11].

2.2. Initializing from pre­trained networks

We experiment with three pre-trained ImageNet [4] net-

works, each with five max pooling layers and between five

and thirteen conv layers (see Section 4.1 for network de-

tails). When a pre-trained network initializes a Fast R-CNN

network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI

pooling layer that is configured by setting H and W to be

compatible with the net’s first fully connected layer (e.g.,

H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-

max (which were trained for 1000-way ImageNet classifi-

cation) are replaced with the two sibling layers described

earlier (a fully connected layer and softmax over K+1 cat-

egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a

list of images and a list of RoIs in those images.

2.3. Fine­tuning for detection

Training all network weights with back-propagation is an

important capability of Fast R-CNN. First, let’s elucidate

why SPPnet is unable to update weights below the spatial

pyramid pooling layer.

The root cause is that back-propagation through the SPP

layer is highly inefficient when each training sample (i.e.

RoI) comes from a different image, which is exactly how

R-CNN and SPPnet networks are trained. The inefficiency

1441

https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/fast-rcnn

stems from the fact that each RoI may have a very large

receptive field, often spanning the entire input image. Since

the forward pass must process the entire receptive field, the

training inputs are large (often the entire image).

We propose a more efficient training method that takes

advantage of feature sharing during training. In Fast R-

CNN training, stochastic gradient descent (SGD) mini-

batches are sampled hierarchically, first by sampling N im-

ages and then by sampling R/N RoIs from each image.

Critically, RoIs from the same image share computation

and memory in the forward and backward passes. Making

N small decreases mini-batch computation. For example,

when using N = 2 and R = 128, the proposed training

scheme is roughly 64× faster than sampling one RoI from

128 different images (i.e., the R-CNN and SPPnet strategy).

One concern over this strategy is it may cause slow train-

ing convergence because RoIs from the same image are cor-

related. This concern does not appear to be a practical issue

and we achieve good results with N = 2 and R = 128
using fewer SGD iterations than R-CNN.

In addition to hierarchical sampling, Fast R-CNN uses a

streamlined training process with one fine-tuning stage that

jointly optimizes a softmax classifier and bounding-box re-

gressors, rather than training a softmax classifier, SVMs,

and regressors in three separate stages [9, 11]. The compo-

nents of this procedure (the loss, mini-batch sampling strat-

egy, back-propagation through RoI pooling layers, and SGD

hyper-parameters) are described below.

Multi-task loss. A Fast R-CNN network has two sibling

output layers. The first outputs a discrete probability distri-

bution (per RoI), p = (p0, . . . , pK), over K + 1 categories.

As usual, p is computed by a softmax over the K+1 outputs

of a fully connected layer. The second sibling layer outputs

bounding-box regression offsets, tk =
(

tkx , t
k
y , t

k
w, t

k
h

)

, for

each of the K object classes, indexed by k. We use the pa-

rameterization for tk given in [9], in which tk specifies a

scale-invariant translation and log-space height/width shift

relative to an object proposal.

Each training RoI is labeled with a ground-truth class u
and a ground-truth bounding-box regression target v. We

use a multi-task loss L on each labeled RoI to jointly train

for classification and bounding-box regression:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v), (1)

in which Lcls(p, u) = − log pu is log loss for true class u.

The second task loss, Lloc, is defined over a tuple of

true bounding-box regression targets for class u, v =
(vx, vy, vw, vh), and a predicted tuple tu = (tux , t

u
y , t

u
w, t

u
h),

again for class u. The Iverson bracket indicator function

[u ≥ 1] evaluates to 1 when u ≥ 1 and 0 otherwise. By

convention the catch-all background class is labeled u = 0.

For background RoIs there is no notion of a ground-truth

bounding box and hence Lloc is ignored. For bounding-box

regression, we use the loss

Lloc(t
u, v) =

∑

i∈{x,y,w,h}

smoothL1
(tui − vi), (2)

in which

smoothL1
(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(3)

is a robust L1 loss that is less sensitive to outliers than the

L2 loss used in R-CNN and SPPnet. When the regression

targets are unbounded, training with L2 loss can require

careful tuning of learning rates in order to prevent exploding

gradients. Eq. 3 eliminates this sensitivity.

The hyper-parameter λ in Eq. 1 controls the balance be-

tween the two task losses. We normalize the ground-truth

regression targets vi to have zero mean and unit variance.

All experiments use λ = 1.

We note that [6] uses a related loss to train a class-

agnostic object proposal network. Different from our ap-

proach, [6] advocates for a two-network system that sepa-

rates localization and classification. OverFeat [19], R-CNN

[9], and SPPnet [11] also train classifiers and bounding-box

localizers, however these methods use stage-wise training,

which we show is suboptimal for Fast R-CNN (Section 5.1).

Mini-batch sampling. During fine-tuning, each SGD

mini-batch is constructed from N = 2 images, chosen uni-

formly at random (as is common practice, we actually iter-

ate over permutations of the dataset). We use mini-batches

of size R = 128, sampling 64 RoIs from each image. As

in [9], we take 25% of the RoIs from object proposals that

have intersection over union (IoU) overlap with a ground-

truth bounding box of at least 0.5. These RoIs comprise

the examples labeled with a foreground object class, i.e.

u ≥ 1. The remaining RoIs are sampled from object pro-

posals that have a maximum IoU with ground truth in the in-

terval [0.1, 0.5), following [11]. These are the background

examples and are labeled with u = 0. The lower threshold

of 0.1 appears to act as a heuristic for hard example mining

[8]. During training, images are horizontally flipped with

probability 0.5. No other data augmentation is used.

Back-propagation through RoI pooling layers. Back-

propagation routes derivatives through the RoI pooling

layer. For clarity, we assume only one image per mini-batch

(N = 1), though the extension to N > 1 is straightforward

because the forward pass treats all images independently.

Let xi ∈ R be the i-th activation input into the RoI pool-

ing layer and let yrj be the layer’s j-th output from the r-

th RoI. The RoI pooling layer computes yrj = xi∗(r,j), in

which i∗(r, j) = argmaxi′∈R(r,j) xi′ . R(r, j) is the index

1442

set of inputs in the sub-window over which the output unit

yrj max pools. A single xi may be assigned to several dif-

ferent outputs yrj .

The RoI pooling layer’s backwards function computes

partial derivative of the loss function with respect to each

input variable xi by following the argmax switches:

∂L

∂xi

=
∑

r

∑

j

[i = i∗(r, j)]
∂L

∂yrj
. (4)

In words, for each mini-batch RoI r and for each pooling

output unit yrj , the partial derivative ∂L/∂yrj is accumu-

lated if i is the argmax selected for yrj by max pooling.

In back-propagation, the partial derivatives ∂L/∂yrj are al-

ready computed by the backwards function of the layer

on top of the RoI pooling layer.

SGD hyper-parameters. The fully connected layers used

for softmax classification and bounding-box regression are

initialized from zero-mean Gaussian distributions with stan-

dard deviations 0.01 and 0.001, respectively. Biases are ini-

tialized to 0. All layers use a per-layer learning rate of 1 for

weights and 2 for biases and a global learning rate of 0.001.

When training on VOC07 or VOC12 trainval we run SGD

for 30k mini-batch iterations, and then lower the learning

rate to 0.0001 and train for another 10k iterations. When

we train on larger datasets, we run SGD for more iterations,

as described later. A momentum of 0.9 and parameter decay

of 0.0005 (on weights and biases) are used.

2.4. Scale invariance

We explore two ways of achieving scale invariant ob-

ject detection: (1) via “brute force” learning and (2) by us-

ing image pyramids. These strategies follow the two ap-

proaches in [11]. In the brute-force approach, each image

is processed at a pre-defined pixel size during both training

and testing. The network must directly learn scale-invariant

object detection from the training data.

The multi-scale approach, in contrast, provides approx-

imate scale-invariance to the network through an image

pyramid. At test-time, the image pyramid is used to ap-

proximately scale-normalize each object proposal. During

multi-scale training, we randomly sample a pyramid scale

each time an image is sampled, following [11], as a form of

data augmentation. We experiment with multi-scale train-

ing for smaller networks only, due to GPU memory limits.

3. Fast R-CNN detection

Once a Fast R-CNN network is fine-tuned, detection

amounts to little more than running a forward pass (assum-

ing object proposals are pre-computed). The network takes

as input an image (or an image pyramid, encoded as a list

of images) and a list of R object proposals to score. At

test-time, R is typically around 2000, although we will con-

sider cases in which it is larger (≈ 45k). When using an

image pyramid, each RoI is assigned to the scale such that

the scaled RoI is closest to 2242 pixels in area [11].

For each test RoI r, the forward pass outputs a class

posterior probability distribution p and a set of predicted

bounding-box offsets relative to r (each of the K classes

gets its own refined bounding-box prediction). We assign a

detection confidence to r for each object class k using the

estimated probability Pr(class = k | r)
∆
= pk. We then

perform non-maximum suppression independently for each

class using the algorithm and settings from R-CNN [9].

3.1. Truncated SVD for faster detection

For whole-image classification, the time spent comput-

ing the fully connected layers is small compared to the conv

layers. On the contrary, for detection the number of RoIs

to process is large and nearly half of the forward pass time

is spent computing the fully connected layers (see Fig. 2).

Large fully connected layers are easily accelerated by com-

pressing them with truncated SVD [5, 23].

In this technique, a layer parameterized by the u × v
weight matrix W is approximately factorized as

W ≈ UΣtV
T (5)

using SVD. In this factorization, U is a u × t matrix com-

prising the first t left-singular vectors of W , Σt is a t × t
diagonal matrix containing the top t singular values of W ,

and V is v × t matrix comprising the first t right-singular

vectors of W . Truncated SVD reduces the parameter count

from uv to t(u + v), which can be significant if t is much

smaller than min(u, v). To compress a network, the single

fully connected layer corresponding to W is replaced by

two fully connected layers, without a non-linearity between

them. The first of these layers uses the weight matrix ΣtV
T

(and no biases) and the second uses U (with the original bi-

ases associated with W). This simple compression method

gives good speedups when the number of RoIs is large.

4. Main results

Three main results support this paper’s contributions:

1. State-of-the-art mAP on VOC07, 2010, and 2012

2. Fast training and testing compared to R-CNN, SPPnet

3. Fine-tuning conv layers in VGG16 improves mAP

4.1. Experimental setup

Our experiments use three pre-trained ImageNet models

that are available online.2 The first is the CaffeNet (essen-

tially AlexNet [14]) from R-CNN [9]. We alternatively refer

2https://github.com/BVLC/caffe/wiki/Model-Zoo

1443

https://github.com/BVLC/caffe/wiki/Model-Zoo
截断 SVD

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07

without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.

Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07

trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other

methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-

work is VGG CNN M 1024 from [3], which has the same

depth as S, but is wider. We call this network model M,

for “medium.” The final network is the very deep VGG16

model from [20]. Since this model is the largest, we call

it model L. In this section, all experiments use single-scale

training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for

short) against the top methods on the comp4 (outside data)

track from the public leaderboard (Table 2, Table 3).3 For

the NUS NIN c2000 and BabyLearning methods, there are

no associated publications at this time and we could not

find exact information on the ConvNet architectures used;

they are variants of the Network-in-Network design [17].

All other methods are initialized from the same pre-trained

VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a

mAP of 65.7% (and 68.4% with extra data). It is also two

orders of magnitude faster than the other methods, which

are all based on the “slow” R-CNN pipeline. On VOC10,

3http://host.robots.ox.ac.uk:8080/leaderboard

(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN

(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-

val plus segmentation annotations; it is designed to boost

R-CNN accuracy by using a Markov random field to reason

over R-CNN detections and segmentations from the O2P

[1] semantic-segmentation method. Fast R-CNN can be

swapped into SegDeepM in place of R-CNN, which may

lead to better results. When using the enlarged 07++12

training set (see Table 2 caption), Fast R-CNN’s mAP in-

creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and

SPPnet. All methods start from the same pre-trained

VGG16 network and use bounding-box regression. The

VGG16 SPPnet results were computed by the authors of

[11]. SPPnet uses five scales during both training and test-

ing. The improvement of Fast R-CNN over SPPnet illus-

trates that even though Fast R-CNN uses single-scale train-

ing and testing, fine-tuning the conv layers provides a large

improvement in mAP (from 63.1% to 66.9%). R-CNN

achieves a mAP of 66.0%. As a minor point, SPPnet was

trained without examples marked as “difficult” in PASCAL.

Removing these examples improves Fast R-CNN mAP to

68.1%. All other experiments use “difficult” examples.

1444

http://host.robots.ox.ac.uk:8080/leaderboard

4.4. Training and testing time

Fast training and testing times are our second main re-

sult. Table 4 compares training time (hours), testing rate

(seconds per image), and mAP on VOC07 between Fast R-

CNN, R-CNN, and SPPnet. For VGG16, Fast R-CNN pro-

cesses images 146× faster than R-CNN without truncated

SVD and 213× faster with it. Training time is reduced by

9×, from 84 hours to 9.5. Compared to SPPnet, Fast R-

CNN trains VGG16 2.7× faster (in 9.5 vs. 25.5 hours) and

tests 7× faster without truncated SVD or 10× faster with it.

Fast R-CNN also eliminates hundreds of gigabytes of disk

storage, because it does not cache features.

Fast R-CNN R-CNN SPPnet

S M L S M L †L

train time (h) 1.2 2.0 9.5 22 28 84 25

train speedup 18.3× 14.0× 8.8× 1× 1× 1× 3.4×

test rate (s/im) 0.10 0.15 0.32 9.8 12.1 47.0 2.3

⊲ with SVD 0.06 0.08 0.22 - - - -

test speedup 98× 80× 146× 1× 1× 1× 20×

⊲ with SVD 169× 150× 213× - - - -

VOC07 mAP 57.1 59.2 66.9 58.5 60.2 66.0 63.1

⊲ with SVD 56.5 58.7 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-

CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.

SPPnet uses the five scales specified in [11]. †Timing provided by

the authors of [11]. Times were measured on an Nvidia K40 GPU.

Truncated SVD. Truncated SVD can reduce detection

time by more than 30% with only a small (0.3 percent-

age point) drop in mAP and without needing to perform

additional fine-tuning after model compression. Fig. 2 il-

lustrates how using the top 1024 singular values from the

25088× 4096 matrix in VGG16’s fc6 layer and the top 256
singular values from the 4096×4096 fc7 layer reduces run-

time with little loss in mAP. Further speed-ups are possi-

ble with smaller drops in mAP if one fine-tunes again after

compression.

roi_pool5
5.4% (17ms)

other

3.5% (11ms)

fc6

38.7% (122ms)

conv

46.3% (146ms)

fc7
6.2% (20ms)

Forward pass timing
mAP 66.9% @ 320ms / image

roi_pool5
7.9% (17ms)

other

5.1% (11ms)

fc6

17.5% (37ms)

conv

67.8% (143ms)

fc71.7% (4ms)

Forward pass timing (SVD)
mAP 66.6% @ 223ms / image

Figure 2. Timing for VGG16 before and after truncated SVD. Be-

fore SVD, fully connected layers fc6 and fc7 take 45% of the time.

4.5. Which layers to fine­tune?

For the less deep networks considered in the SPPnet pa-

per [11], fine-tuning only the fully connected layers ap-

peared to be sufficient for good accuracy. We hypothesized

that this result would not hold for very deep networks. To

validate that fine-tuning the conv layers is important for

VGG16, we use Fast R-CNN to fine-tune, but freeze the

thirteen conv layers so that only the fully connected layers

learn. This ablation emulates single-scale SPPnet training

and decreases mAP from 66.9% to 61.4% (Table 5). This

experiment verifies our hypothesis: training through the RoI

pooling layer is important for very deep nets.

layers that are fine-tuned in model L SPPnet L

≥ fc6 ≥ conv3 1 ≥ conv2 1 ≥ fc6

VOC07 mAP 61.4 66.9 67.2 63.1

test rate (s/im) 0.32 0.32 0.32 2.3

Table 5. Effect of restricting which layers are fine-tuned for

VGG16. Fine-tuning ≥ fc6 emulates the SPPnet training algo-

rithm [11], but using a single scale. SPPnet L results were ob-

tained using five scales, at a significant (7×) speed cost.

Does this mean that all conv layers should be fine-tuned?

In short, no. In the smaller networks (S and M) we find

that conv1 is generic and task independent (a well-known

fact [14]). Allowing conv1 to learn, or not, has no mean-

ingful effect on mAP. For VGG16, we found it only nec-

essary to update layers from conv3 1 and up (9 of the 13

conv layers). This observation is pragmatic: (1) updating

from conv2 1 slows training by 1.3× (12.5 vs. 9.5 hours)

compared to learning from conv3 1; and (2) updating from

conv1 1 over-runs GPU memory. The difference in mAP

when learning from conv2 1 up was only +0.3 points (Ta-

ble 5, last column). All Fast R-CNN results in this paper

using VGG16 fine-tune layers conv3 1 and up; all experi-

ments with models S and M fine-tune layers conv2 and up.

5. Design evaluation

We conducted experiments to understand how Fast R-

CNN compares to R-CNN and SPPnet, as well as to eval-

uate design decisions. Following best practices, we per-

formed these experiments on the PASCAL VOC07 dataset.

5.1. Does multi­task training help?

Multi-task training is convenient because it avoids man-

aging a pipeline of sequentially-trained tasks. But it also has

the potential to improve results because the tasks influence

each other through a shared representation (the ConvNet)

[2]. Does multi-task training improve object detection ac-

curacy in Fast R-CNN?

To test this question, we train baseline networks that

use only the classification loss, Lcls, in Eq. 1 (i.e., setting

1445

S M L

multi-task training? X X X X X X

stage-wise training? X X X

test-time bbox reg? X X X X X X

VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

λ = 0). These baselines are printed for models S, M, and L

in the first column of each group in Table 6. Note that these

models do not have bounding-box regressors. Next (second

column per group), we take networks that were trained with

the multi-task loss (Eq. 1, λ = 1), but we disable bounding-

box regression at test time. This isolates the networks’ clas-

sification accuracy and allows an apples-to-apples compar-

ison with the baseline networks.

Across all three networks we observe that multi-task

training improves pure classification accuracy relative to

training for classification alone. The improvement ranges

from +0.8 to +1.1 mAP points, showing a consistent posi-

tive effect from multi-task learning.

Finally, we take the baseline models (trained with only

the classification loss), tack on the bounding-box regression

layer, and train them with Lloc while keeping all other net-

work parameters frozen. The third column in each group

shows the results of this stage-wise training scheme: mAP

improves over column one, but stage-wise training under-

performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant

object detection: brute-force learning (single scale) and im-

age pyramids (multi-scale). In either case, we define the

scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may

be less than 600 for some images as we cap the longest im-

age side at 1000 pixels and maintain the image’s aspect ra-

tio. These values were selected so that VGG16 fits in GPU

memory during fine-tuning. The smaller models are not

memory bound and can benefit from larger values of s; how-

ever, optimizing s for each model is not our main concern.

We note that PASCAL images are 384 × 473 pixels on av-

erage and thus the single-scale setting typically upsamples

images by a factor of 1.6. The average effective stride at the

RoI pooling layer is thus ≈ 10 pixels.

In the multi-scale setting, we use the same five scales

specified in [11] (s ∈ {480, 576, 688, 864, 1200}) to facili-

tate comparison with SPPnet. However, we cap the longest

side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested

with either one or five scales. Perhaps the most surpris-

ing result in [11] was that single-scale detection performs

almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L

scales 1 5 1 5 1 5 1

test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32

VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model

S) results are from [11]. Larger networks with a single-scale offer

the best speed / accuracy tradeoff. (L cannot use multi-scale in our

implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-

ing scale invariance. The multi-scale approach offers only

a small increase in mAP at a large cost in compute time

(Table 7). In the case of VGG16 (model L), we are lim-

ited to using a single scale by implementation details. Yet it

achieves a mAP of 66.9%, which is slightly higher than the

66.0% reported for R-CNN [10], even though R-CNN uses

“infinite” scales in the sense that each proposal is warped to

a canonical size.

Since single-scale processing offers the best tradeoff be-

tween speed and accuracy, especially for very deep models,

all experiments outside of this sub-section use single-scale

training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied

with more training data. Zhu et al. [24] found that DPM [8]

mAP saturates after only a few hundred to thousand train-

ing examples. Here we augment the VOC07 trainval set

with the VOC12 trainval set, roughly tripling the number

of images to 16.5k, to evaluate Fast R-CNN. Enlarging the

training set improves mAP on VOC07 test from 66.9% to

70.0% (Table 1). When training on this dataset we use 60k

mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,

for which we construct a dataset of 21.5k images from the

union of VOC07 trainval, test, and VOC12 trainval. When

training on this dataset, we use 100k SGD iterations and

lower the learning rate by 0.1× each 40k iterations (instead

of each 30k). For VOC10 and 2012, mAP improves from

66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during

fine-tuning instead of training one-vs-rest linear SVMs

1446

post-hoc, as was done in R-CNN and SPPnet. To under-

stand the impact of this choice, we implemented post-hoc

SVM training with hard negative mining in Fast R-CNN.

We use the same training algorithm and hyper-parameters

as in R-CNN.

method classifier S M L

R-CNN [9, 10] SVM 58.5 60.2 66.0

FRCN [ours] SVM 56.3 58.7 66.8

FRCN [ours] softmax 57.1 59.2 66.9

Table 8. Fast R-CNN with softmax vs. SVM (VOC07 mAP).

Table 8 shows softmax slightly outperforming SVM for

all three networks, by +0.1 to +0.8 mAP points. This ef-

fect is small, but it demonstrates that “one-shot” fine-tuning

is sufficient compared to previous multi-stage training ap-

proaches. We note that softmax, unlike one-vs-rest SVMs,

introduces competition between classes when scoring a RoI.

5.5. Are more proposals always better?

There are (broadly) two types of object detectors: those

that use a sparse set of object proposals (e.g., selective

search [21]) and those that use a dense set (e.g., DPM [8]).

Classifying sparse proposals is a type of cascade [22] in

which the proposal mechanism first rejects a vast number of

candidates leaving the classifier with a small set to evaluate.

This cascade improves detection accuracy when applied to

DPM detections [21]. We find evidence that the proposal-

classifier cascade also improves Fast R-CNN accuracy.

Using selective search’s quality mode, we sweep from 1k

to 10k proposals per image, each time re-training and re-

testing model M. If proposals serve a purely computational

role, increasing the number of proposals per image should

not harm mAP.

103 104

Number of object proposals

49

51

53

56

58

61

63

66

m
A

P

Sel. Search (SS)

SS (2k) + Rand Dense

SS replace Dense

45k Dense Softmax

45k Dense SVM

49

51

53

56

58

61

63

66

A
v
e
ra

g
e
 R

e
ca

ll

SS Avg. Recall

Figure 3. VOC07 test mAP and AR for various proposal schemes.

We find that mAP rises and then falls slightly as the pro-

posal count increases (Fig. 3, solid blue line). This exper-

iment shows that swamping the deep classifier with more

proposals does not help, and even slightly hurts, accuracy.

This result is difficult to predict without actually running

the experiment. The state-of-the-art for measuring object

proposal quality is Average Recall (AR) [12]. AR correlates

well with mAP for several proposal methods using R-CNN,

when using a fixed number of proposals per image. Fig. 3

shows that AR (solid red line) does not correlate well with

mAP as the number of proposals per image is varied. AR

must be used with care; higher AR due to more proposals

does not imply that mAP will increase. Fortunately, training

and testing with model M takes less than 2.5 hours. Fast

R-CNN thus enables efficient, direct evaluation of object

proposal mAP, which is preferable to proxy metrics.

We also investigate Fast R-CNN when using densely

generated boxes (over scale, position, and aspect ratio), at

a rate of about 45k boxes / image. This dense set is rich

enough that when each selective search box is replaced by

its closest (in IoU) dense box, mAP drops only 1 point (to

57.7%, Fig. 3, blue triangle).

The statistics of the dense boxes differ from those of

selective search boxes. Starting with 2k selective search

boxes, we test mAP when adding a random sample of

1000× {2, 4, 6, 8, 10, 32, 45} dense boxes. For each exper-

iment we re-train and re-test model M. When these dense

boxes are added, mAP falls more strongly than when adding

more selective search boxes, eventually reaching 53.0%.

We also train and test Fast R-CNN using only dense

boxes (45k / image). This setting yields a mAP of 52.9%

(blue diamond). Finally, we check if SVMs with hard nega-

tive mining are needed to cope with the dense box distribu-

tion. SVMs do even worse: 49.3% (blue circle).

5.6. Preliminary MS COCO results

We applied Fast R-CNN (with VGG16) to the MS

COCO dataset [18] to establish a preliminary baseline. We

trained on the 80k image training set for 240k iterations and

evaluated on the “test-dev” set using the evaluation server.

The PASCAL-style mAP is 35.9%; the new COCO-style

AP, which also averages over IoU thresholds, is 19.7%.

6. Conclusion

This paper proposes Fast R-CNN, a clean and fast update

to R-CNN and SPPnet. In addition to reporting state-of-the-

art detection results, we present detailed experiments that

we hope provide new insights. Of particular note, sparse

object proposals appear to improve detector quality. This

issue was too costly (in time) to probe in the past, but be-

comes practical with Fast R-CNN. Of course, there may ex-

ist yet undiscovered techniques that allow dense boxes to

perform as well as sparse proposals. Such methods, if de-

veloped, may help further accelerate object detection.

Acknowledgements. I thank Kaiming He, Larry Zitnick,

and Piotr Dollár for helpful discussions and encouragement.

1447

References

[1] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. In ECCV,

2012. 5

[2] R. Caruana. Multitask learning. Machine learning, 28(1),

1997. 6

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 5

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In CVPR, 2009. 2

[5] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.

Exploiting linear structure within convolutional networks for

efficient evaluation. In NIPS, 2014. 4

[6] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In CVPR, 2014.

3

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

Challenge. IJCV, 2010. 1

[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. TPAMI, 2010. 3, 7, 8

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1, 3, 4, 8

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-

based convolutional networks for accurate object detection

and segmentation. TPAMI, 2015. 5, 7, 8

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, 2014. 1, 2, 3, 4, 5, 6, 7

[12] J. H. Hosang, R. Benenson, P. Dollár, and B. Schiele. What

makes for effective detection proposals? arXiv preprint

arXiv:1502.05082, 2015. 8

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proc. of the ACM

International Conf. on Multimedia, 2014. 2

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 1, 4, 6

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006. 1

[16] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,

W. Hubbard, and L. Jackel. Backpropagation applied to

handwritten zip code recognition. Neural Comp., 1989. 1

[17] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,

2014. 5

[18] T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,

J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-

nick. Microsoft COCO: common objects in context. arXiv

e-prints, arXiv:1405.0312 [cs.CV], 2014. 8

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. OverFeat: Integrated Recognition, Localiza-

tion and Detection using Convolutional Networks. In ICLR,

2014. 1, 3

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 5

[21] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.

Selective search for object recognition. IJCV, 2013. 8

[22] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001. 8

[23] J. Xue, J. Li, and Y. Gong. Restructuring of deep neural

network acoustic models with singular value decomposition.

In Interspeech, 2013. 4

[24] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we

need more training data or better models for object detec-

tion? In BMVC, 2012. 7

[25] Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler.

segDeepM: Exploiting segmentation and context in deep

neural networks for object detection. In CVPR, 2015. 1,

5

1448

